958 resultados para polymorphic membrane protein


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Upon detection of viral RNA, the helicases RIG-I and/or MDA5 trigger, via their adaptor Cardif (also known as IPS-1, MAVS, or VISA), the activation of the transcription factors NF-kappaB and IRF3, which collaborate to induce an antiviral type I interferon (IFN) response. FADD and RIP1, known as mediators of death-receptor signaling, are implicated in this antiviral pathway; however, the link between death-receptor and antiviral signaling is not known. Here we showed that TRADD, a crucial adaptor of tumor necrosis factor receptor (TNFRI), was important in RIG-like helicase (RLH)-mediated signal transduction. TRADD is recruited to Cardif and orchestrated complex formation with the E3 ubiquitin ligase TRAF3 and TANK and with FADD and RIP1, leading to the activation of IRF3 and NF-kappaB. Loss of TRADD prevented Cardif-dependent activation of IFN-beta, reduced the production of IFN-beta in response to RNA viruses, and enhanced vesicular stomatitis virus replication. Thus, TRADD is not only an essential component of proinflammatory TNFRI signaling, but is also required for RLH-Cardif-dependent antiviral immune responses

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The antibody response to Plasmodium falciparum parasites of naturally infected population is critical to elucidate the role of polymorphic alleles in malaria. Thus, we evaluated the impact of antigenic diversity of repetitive and family dimorphic domains of the merozoite surface protein 2 (MSP-2) on immune response of 96 individuals living in Peixoto de Azevedo (MT-Brazil), by ELISA using recombinant MSP-2 proteins. The majority of these individuals were carrying FC27-type infections. IgG antibody responses were predominantly directed to FC27 parasites and were correlated to the extension of polymorphism presented by each MSP-2 region. This finding demonstrated the impact of the genetic polymorphism on antibody response and therefore, its importance on malaria vaccine efficacy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Minor lymphocyte stimulating (Mls) antigens specifically stimulate T cell responses that are restricted to particular T cell receptor (TCR) beta chain variable domains. The Mls phenotype is genetically controlled by an open reading frame (orf) located in the 3' long terminal repeat of mouse mammary tumor virus (MMTV); however, the mechanism of action of the orf gene product is unknown. Whereas predicted orf amino acid sequences show strong overall homology, the 20-30 COOH-terminal residues are strikingly polymorphic. This polymorphic region correlates with TCR V beta specificity. We have generated monoclonal antibodies to a synthetic peptide encompassing the 19 COOH-terminal amino acid residues of Mtv-7 orf, which encodes the Mls-1a determinant. We show here that these antibodies block Mls responses in vitro and can interfere specifically with thymic clonal deletion of Mls-1a reactive V beta 6+ T cells in neonatal mice. Furthermore, the antibodies can inhibit V beta 6+ T cell responses in vivo to an infectious MMTV that shares orf sequence homology and TCR specificity with Mtv-7. These results confirm the predicted extracellular localization of the orf COOH terminus and imply that the orf proteins of both endogenous and exogenous MMTV interact directly with TCR V beta.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Uptake of transferrin by epimastigote forms of the protozoan Trypanosoma cruzi occurs mainly through a cytostome/ cytopharynx, via uncoated endocytic vesicles that bud off from the bottom of the cytopharynx. We have here examined whether detergent-resistant membrane (DRM) domains might be involved in this process. Purified whole cell membrane fractions were assayed for cholesterol levels and used in dot blot analyses. Detergent-resistant membrane markers (cholera B toxin and anti-flotillin-1 antibody) presented positive reaction by dot blots in cholesterol-rich/ protein-poor membrane sub-fractions. The positive dot blot fraction was submitted to lipid composition analysis, showing composition similar to that of raft fractions described for other eukaryotic cells. Immunofluorescence assays allowed the localization of punctual positive signal for flotillin-1, matching the precise cytostome/ cytopharynx location. These data were confirmed by immunofluorescence assays with the co-localization of flotillin-1 and the transferrin uptake site. Our data suggest that DRM domains occur and are integrated at the cytostome/ cytopharynx of T. cruzi epimastigotes, being the main route for transferrin uptake.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Intravenous silibinin (SIL) is an approved therapeutic that has recently been applied to patients with chronic hepatitis C, successfully clearing hepatitis C virus (HCV) infection in some patients even in monotherapy. Previous studies suggested multiple antiviral mechanisms of SIL; however, the dominant mode of action has not been determined. We first analyzed the impact of SIL on replication of subgenomic replicons from different HCV genotypes in vitro and found a strong inhibition of RNA replication for genotype 1a and genotype 1b. In contrast, RNA replication and infection of genotype 2a were minimally affected by SIL. To identify the viral target of SIL we analyzed resistance to SIL in vitro and in vivo. Selection for drug resistance in cell culture identified a mutation in HCV nonstructural protein (NS) 4B conferring partial resistance to SIL. This was corroborated by sequence analyses of HCV from a liver transplant recipient experiencing viral breakthrough under SIL monotherapy. Again, we identified distinct mutations affecting highly conserved amino acid residues within NS4B, which mediated phenotypic SIL resistance also in vitro. Analyses of chimeric viral genomes suggest that SIL might target an interaction between NS4B and NS3/4A. Ultrastructural studies revealed changes in the morphology of viral membrane alterations upon SIL treatment of a susceptible genotype 1b isolate, but not of a resistant NS4B mutant or genotype 2a, indicating that SIL might interfere with the formation of HCV replication sites. CONCLUSION: Mutations conferring partial resistance to SIL treatment in vivo and in cell culture argue for a mechanism involving NS4B. This novel mode of action renders SIL an attractive candidate for combination therapies with other directly acting antiviral drugs, particularly in difficult-to-treat patient cohorts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rhoptry-associated protein 2 (RAP2) is known to be discharged from rhoptry onto the membrane surface of infected and uninfected erythrocytes (UEs) ex vivo and in vitro and this information provides new insights into the understanding of the pathology of severe anemia in falciparum malaria. In this study, a hexahistidine-tagged recombinant protein corresponding to residues 5-190 of the N-terminal of Plasmodium falciparum RAP2 (rN-RAP2) was produced using a new method of solubilization and purification. Expression was induced with D-lactose, a less expensive alternative inducer to the more common isopropyl-²-D-thio-galactopyranosidase. The recombinant protein was purified using two types of commercially-available affinity columns, iminodiacetic and nitrilotriacetic. rN-RAP2 had immunogenic potential, since it induced high titers of anti-RAP2 antibodies in mice. These antibodies recognized full-length RAP2 prepared from Triton X-100 extracts from two strains of P. falciparum. In fact, the antibody recognized a 29-kDa product of RAP2 cleavage as well as 82 and 70-kDa products of RAP1 cleavage. These results indicate that the two antigens share sequence epitopes. Our expressed protein fragment was shown to contain a functional epitope that is also present in rhoptry-derived ring surface protein 2 which attaches to the surface of both infected and UEs and erythroid precursor cells in the bone marrow of malaria patients. Serum from malaria patients who developed anemia during infection recognized rN-RAP2, suggesting that this protein fragment may be important for epidemiological studies investigating whether immune responses to RAP2 exacerbate hemolysis in falciparum malaria patients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Angiotensin II (Ang II) highly stimulates superoxide anion production by neutrophils. The G-protein Rac2 modulates the activity of NADPH oxidase in response to various stimuli. Here, we describe that Ang II induced both Rac2 translocation from the cytosol to the plasma membrane and Rac2 GTP-binding activity. Furthermore, Clostridium difficile toxin A, an inhibitor of the Rho-GTPases family Rho, Rac and Cdc42, prevented Ang II-elicited O2-/ROS production, phosphorylation of the mitogen-activated protein kinases (MAPKs) p38, extracellular signal-regulated kinase 1/2 (ERK1/2) and c-Jun N-terminal kinase 1/2, and Rac2 activation. Rac2 GTPase inhibition by C. difficile toxin A was accompanied by a robust reduction of the cytosolic Ca(2)(+) elevation induced by Ang II in human neutrophils. Furthermore, SB203580 and PD098059 act as inhibitors of p38MAPK and ERK1/2 respectively, wortmannin, an inhibitor of phosphatidylinositol-3-kinase, and cyclosporin A, a calcineurin inhibitor, hindered both translocation of Rac2 from the cytosol to the plasma membrane and enhancement of Rac2 GTP-binding elicited by Ang II. These results provide evidence that the activation of Rac2 by Ang II is exerted through multiple signalling pathways, involving Ca(2)(+)/calcineurin and protein kinases, the elucidation of which should be insightful in the design of new therapies aimed at reversing the inflammation of vessel walls found in a number of cardiovascular diseases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Amantadine is an antiviral and antiparkinsonian drug that has been evaluated in combination therapies against hepatitis C virus (HCV) infection. Controversial results have been reported concerning its efficacy, and its mechanism of action remains unclear. Data obtained in vitro suggested a role of amantadine in inhibiting HCV p7-mediated cation conductance. In keeping with the fact that mitochondria are responsible to ionic fluxes and that HCV infection impairs mitochondrial function, we investigated a potential role of amantadine in modulating mitochondrial function. Using a well-characterized inducible cell line expressing the full-length HCV polyprotein, we found that amantadine not only prevented but also rescued HCV protein-mediated mitochondrial dysfunction. Specifically, amantadine corrected (i) overload of mitochondrial Ca(2+); (ii) inhibition of respiratory chain activity and oxidative phosphorylation; (iii) reduction of membrane potential; and (iv) overproduction of reactive oxygen species. The effects of amantadine were observed within 15 min following drug administration and confirmed in Huh-7.5 cells transfected with an infectious HCV genome. These effects were also observed in cells expressing subgenomic HCV constructs, indicating that they are not mediated or only in part mediated by p7. Single organelle analyzes carried out on isolated mouse liver mitochondria demonstrated that amantadine induces hyperpolarization of the membrane potential. Moreover, amantadine treatment increased the calcium threshold required to trigger mitochondrial permeability transition opening. In conclusion, these results support a role of amantadine in preserving cellular bioenergetics and redox homeostasis in HCV-infected cells and unveil an effect of the drug which might be exploited for a broader therapeutic utilization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The neuronal monocarboxylate transporter, MCT2, is not only an energy substrate carrier but it is also purported to be a binding partner for the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor GluR2 subunit. To unravel a putative role of MCT2 in the regulation of GluR2 subcellular distribution, Neuro2A cells and primary cultures of mouse cortical neurons were co-transfected with plasmids containing sequences to express the fluorescent proteins mStrawberry (mStb)-fused MCT2 and Venus-fused GluR2. Subsequently, their subcellular distribution was visualized by fluorescence microscopy. GluR2 was led to form perinuclear and dendritic clusters together with MCT2 when co-transfected in Neuro2A cells or in neurons, following the original distribution of MCT2. MCT2 co-transfection had no effect on the intracellular distribution of several other post-synaptic proteins, although it partially affected the intracellular distribution of GluR1 similarly to GluR2. Both cell surface and total protein expression levels of GluR2 were significantly reduced by co-expression with MCT2. Finally, partial perinuclear and dendritic co-localization between MCT2 and Rab8, a member of the small GTPase family involved in membrane trafficking of AMPA receptors, was also observed in co-transfected neurons. These results suggest that MCT2 could influence AMPA receptor trafficking within neurons by modulating GluR2 sorting between different subcellular compartments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The extracellular pectic matrix is a rich source of oligogalacturonic acid (OGA), one of the most abundant polymeric regulatory molecules on the earth's surface. OGAs regulate the expression of a variety of defense genes and have also been implicated in developmental processes. Little is known about how cells perceive OGAs and we have been attempting to characterise proteins capable of interacting with these molecules. We recently succeeded in cloning a cDNA encoding a small OGA-binding protein, remorin. OGA-binding to remorin is not highly specific, the protein binds homogalacturonides, complex pectic polymers and the animal polyuronide heparin. This lack of specificity contrasts with that often observed with classical receptors and the function of remorin remains to be discovered. Remorin copurifies with the plasma membrane but is a very hydrophilic polypeptide. Its behavior during cell fractionation, as well as a number of properties including the OGA-stimulated in vitro phosphorylation and preliminary localization studies, all suggest parallels with some viral movement proteins. Some of these comparisons will be presented. Experiments to directly test for the possible role of this protein in cell-to-cell signalling are in progress. EEF is supported by FNRS grant 31-3672-92.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

GB virus B (GBV-B), which is hepatotropic in experimentally infected small New World primates, is a member of the Hepacivirus genus but phylogenetically relatively distant from hepatitis C virus (HCV). To gain insights into the role and specificity of hepaciviral nonstructural protein 2 (NS2), which is required for HCV polyprotein processing and particle morphogenesis, we investigated whether NS2 structural and functional features are conserved between HCV and GBV-B. We found that GBV-B NS2, like HCV NS2, has cysteine protease activity responsible for cleavage at the NS2/NS3 junction, and we experimentally confirmed the location of this junction within the viral polyprotein. A model for GBV-B NS2 membrane topology was experimentally established by determining the membrane association properties of NS2 segments fused to green fluorescent protein (GFP) and their nuclear magnetic resonance structures using synthetic peptides as well as by applying an N-glycosylation scanning approach. Similar glycosylation studies confirmed the HCV NS2 organization. Together, our data show that despite limited amino acid sequence similarity, GBV-B and HCV NS2 proteins share a membrane topology with 3 N-terminal transmembrane segments, which is also predicted to apply to other recently discovered hepaciviruses. Based on these data and using trans-complementation systems, we found that intragenotypic hybrid NS2 proteins with heterologous N-terminal membrane segments were able to efficiently trans-complement an assembly-deficient HCV mutant with a point mutation in the NS2 C-terminal domain, while GBV-B/HCV or intergenotypic NS2 chimeras were not. These studies indicate that virus- and genotype-specific intramolecular interactions between N- and C-terminal domains of NS2 are critically involved in HCV morphogenesis. IMPORTANCE: Nonstructural protein 2 (NS2) of hepatitis C virus (HCV) is a multifunctional protein critically involved in polyprotein processing and virion morphogenesis. To gain insights into NS2 mechanisms of action, we investigated whether NS2 structural and functional features are conserved between HCV and GB virus B (GBV-B), a phylogenetically relatively distant primate hepacivirus. We showed that GBV-B NS2, like HCV NS2, carries cysteine protease activity. We experimentally established a model for GBV-B NS2 membrane topology and demonstrated that despite limited sequence similarity, GBV-B and HCV NS2 share an organization with three N-terminal transmembrane segments. We found that the role of HCV NS2 in particle assembly is genotype specific and relies on critical interactions between its N- and C-terminal domains. This first comparative analysis of NS2 proteins from two hepaciviruses and our structural predictions of NS2 from other newly identified mammal hepaciviruses highlight conserved key features of the hepaciviral life cycle.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A protein from Arabidopsis thaliana (L.) Heynh. showing homology to animal proteins of the NaPi-1 family, involved in the transport of inorganic phosphate, chloride, glutamate and sialic acid, has been characterized. This protein, named ANTR2 (for anion transporters) was shown by chloroplast subfractionation to be localized to the plastid inner envelope in both A. thaliana and Spinacia oleracea (L.). Immunolocalization revealed that ANTR2 was expressed in the leaf mesophyll cells as well as in the developing embryo at the upturned-U stage. Five additional homologues of ANTR2 are found in the Arabidopsis genome, of which one was shown by green fluorescent protein (GFP) fusion to be also located in the chloroplast. All ANTR proteins share homology to the animal NaPi-1 family, as well as to other organic-anion transporters that are members of the Anion:Cation Symporter (ACS) family, and share the main features of transporters from this family, including the presence of 12 putative transmembrane domains and of a 7-amino acid motif in the fourth putative transmembrane domain. ANTR2 thus represent a novel protein of the plastid inner envelope that is likely to be involved in anion transport.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Enhanced understanding of the transmission dynamics and population genetics for Plasmodium vivax is crucial in predicting the emergence and spread of novel parasite phenotypes with major public health implications, such as new relapsing patterns, drug resistance and increased virulence. Suitable molecular markers are required for these population genetic studies. Here, we focus on two groups of molecular markers that are commonly used to analyse natural populations of P. vivax. We use markers under selective pressure, for instance, antigen-coding polymorphic genes, and markers that are not under strong natural selection, such as most minisatellite and microsatellite loci. First, we review data obtained using genes encoding for P. vivax antigens: circumsporozoite protein, merozoite surface proteins 1 and 3α, apical membrane antigen 1 and Duffy binding antigen. We next address neutral or nearly neutral molecular markers, especially microsatellite loci, providing a complete list of markers that have already been used in P. vivax populations studies. We also analyse the microsatellite loci identified in the P. vivax genome project. Finally, we discuss some practical uses for P. vivax genotyping, for example, detecting multiple-clone infections and tracking the geographic origin of isolates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract: The genesis of the cardiac action potential, which accounts for the cardiac contraction, is due to the sodium current INa mediated by the voltage-gated sodium channel Nav1.5. Several cardiac arrhythmias such as the Brugada syndrome are known te be caused by mutations in SCN5A, the gene encoding Nav1.5. Studies of these mutations allowed a better understanding of biophysical and functional properties of Nav1.5. However, only few investigations have been performed in order to understand the regulation of Nav1.5. During my thesis, I investigated different mechanisms of regulation of Nav1.5 using a heterologous expression system, HEK293 cells, coupled with a technique of sodium current recording: the patch clamp in whole cell configuration. In previous studies it has been shown that an enzyme of the Nedd4 family (Nedd4-2) regulates an epithelial sodium channel via the interaction with PY-motifs present in the latter. Interestingly, Nav1.5 contains a similar PY-motif, which motivated us to study the role of Nedd4-2 expressed in heart for the regulation of Nav1.5. In a second study, we investigated the implication of two Nav1.5 mutants, which were either less functional or net functional (Nav1.5 R535X and Nav1.5 L325R respectively) implied in the genesis of the Brugada syndrome by fever. Our results established two mechanisms implied in Nav1.5 regulation. The first one implies that following the interaction between the PY-motif of Nav1.5 and Nedd4- 2 Nav1.5 is ubiquitinated by Nedd4-2. This ubiquitination leads to the internalization of Nav1 .5. The second mechanism is a phenomenon called the "dominant negative" effect of Nav1.5 L325R on Nay1.5 where the decrease of 'Na is potentially due to the retention of Nav1.5 by Nav1.5 L325R in an undefined intracellular compartment. These studies defined two mechanisms of Nav1.5 regulation, which could play an important role for the genesis of cardiac arrhythmias where molecular processes are still poorly understood. Résumé La genèse du potentiel d'action cardiaque, permettant la contraction cardiaque, est due au courant sodique INa issu des canaux sodiques cardiaques dépendants du voltage Nav1.5. Nombreuses arythmies cardiaques telles que le syndrome de Brugada sont connues pour être liées à des mutations du gène SCN5A, codant pour Nav1.5. L'étude de ces mutations a permis une meilleure compréhension des propriétés structurelles et fonctionnelles de Nav1.5 et leurs implications dans la genèse de ces pathologies. Néanmoins peu d'études ont été menées afin de comprendre les mécanismes de régulation de Nav1.5. Mon travail de thèse a consisté à étudier des mécanismes de régulation de Nav1.5 en utilisant un système d'expression hétérologue, les cellules HEK293, couplé à une technique d'enregistrement des courants sodiques, le "patch clamp" en configuration cellule entière. La présence sur Nav1.5 d'un motif-PY similaire à ceux nécessaires pour la régulation d'un canal épithélial sodique par une enzyme de la famille de Nedd4, nous a amenée à étudier le rôle de ces ubiquitine-ligases, en particulier Nedd4-2, dans la régulation de Nav1.5. La seconde étude s'est intéressée aux conséquences de deux mutations de SCN5A codant pour deux mutants peu ou pas fonctionnels (Nav1.5 L325R et Nav1.5 R535X respectivement) retrouvées chez des patients présentant un syndrome de Brugada exacerbé par un état fébrile. Nos résultats ont permis d'établir deux mécanismes de régulation de Nav1.5 L'un par Nedd4-2 qui implique rubiquitination de Nav1.5 par cette ligase suite à l'interaction entre le motif-PY de Nav1.5 et Nedd4-2. Cette modification déclenche l'internalisation du canal impliquée dans la diminution d'INa. Le second mécanisme quant à lui est un effet "dominant négatif" de Nav1.5 L325R sur Nav1.5 aboutissant à une diminution d'INa suite à la séquestration intracellulaire potentielle de Nav1.5 par Nav1.5 L325R. Ces études ont mis en évidence deux mécanismes de régulation de Nav1.5 pouvant jouer un rôle majeur dans la genèse et/ou l'accentuation des arythmies cardiaques dont les processus moléculaires au sein des cardiomyocytes, impliquant des modifications du courant sodiques, sont encore mal compris. Résumé destiné à un large public La dépolarisation électrique de la membrane des cellules cardiaques permet la contraction du coeur. La génèse de cette activité électrique est due au courant sodique issu d'un type de canal à sodium situé dans la membrane des cellules cardiaques. De nombreuses pathologies provoquant des troubles du rythme cardiaque sont issues de mutations du gène qui code pour ce canal à sodium. Ces canaux mutants, entrainant diverses pathologies cardiaques telles que le syndrome de Brugada, ont été largement étudiées. Néanmoins, peu de travaux ont été réalisés sur les mécanismes de régulation de ce canal à sodium non muté. Mon travail de thèse a consisté à étudier certains des mécanismes de régulation de ce canal à sodium en utilisant une technique permettant l'enregistrement des courants sodiques issus de l'expression de ces canaux à sodium à la membrane de cellules mammifères. La présence sur ce canal à sodium d'une structure spécifique, similaire à celle nécessaire pour la régulation d'un canal épithélial à sodium par une enzyme appelée Nedd4-2, nous a amenée à étudier le rôle de cette enzyme dans la régulation de ce canal à sodium. La seconde étude s'est intéressée aux rôles de deux mutations du gène codant pour ce canal à sodium retrouvées chez des patients présentant un syndrome de Brugada exacerbé par la fièvre. Nos résultats nous ont permis d'établir deux mécanismes de régulation de ce canal à sodium diminuant le courant sodique l'un par l'action de l'enzyme Nedd4-2, suite à son interaction avec ce canal, qui modifie ce canal à sodium (ubiquitination) diminuant de ce fait la densité membranaire du canal. L'autre par un mécanisme suggérant un effet négatif de l'un des canaux mutants sur l'expression à la membrane du canal à sodium non muté. Ces études ont mis en évidence deux mécanismes de régulation de ce canal à sodium pouvant jouer un rôle majeur dans la genèse et/ou l'accentuation des troubles du rythme cardiaques dont les mécanismes cellulaires sont encore incompris.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The genetic diversity displayed by Plasmodium falciparum, the most deadly Plasmodium species, is a significant obstacle for effective malaria vaccine development. In this study, we identified genetic polymorphisms in P. falciparum glutamate-rich protein (GLURP), which is currently being tested in clinical trials as a malaria vaccine candidate, from isolates found circulating in the Brazilian Amazon at variable transmission levels. The study was performed using samples collected in 1993 and 2008 from rural villages situated near Porto Velho, in the state of Rondônia. DNA was extracted from 126 P. falciparum-positive thick blood smears using the phenol-chloroform method and subjected to a nested polymerase chain reaction protocol with specific primers against two immunodominant regions of GLURP, R0 and R2. Only one R0 fragment and four variants of the R2 fragment were detected. No differences were observed between the two time points with regard to the frequencies of the fragment variants. Mixed infections were uncommon. Our results demonstrate conservation of GLURP-R0 and limited polymorphic variation of GLURP-R2 in P. falciparum isolates from individuals living in Porto Velho. This is an important finding, as genetic polymorphisms in B and T-cell epitopes could have implications for the immunological properties of the antigen.