967 resultados para polymer-metal
Resumo:
1. The polarographic behaviour of glycine, α-alanine, β-alanine, valine, aspartic acid, glutamic acid and asparagine complexes of lead has been studied at various pH values and in presence of (1) NaOH, (2) Na2CO3 and (3) NH4 NO3+NH4OH. All the polarographic waves have been found to be reversible. 2. Experiments conducted on the effect of variation of pH, i.e., 7
Resumo:
Monothiobenzoate (MTB) (Chemical Equation Presented) complexes with the molecular formulas Cr(MTB)3, [Ni(MTB)2]n, [Zn(MTB)2]n, [Cd(MTB)2]n, [Hg(MTB)2]n, [Cu(MTB)]n, and [Ag(MTB)]n have been prepared and studied. All the complexes are nonionic in acetonitrile. Only the chromium complex is soluble in nitrobenzene and found to be monomeric cryoscopically. The thiobenzoate ligand appears to be asymmetrically chelated in Cr(III) and Cd(II) complexes, with stronger oxygen and sulfur coordination, respectively, while practically symmetrically coordinated in Ni(II) and Zn(II) complexes. These four complexes are assigned distorted octahedral structures around the metal ion. The coordination in Hg(II), Cu(I), and Ag(I) complexes is mainly through sulfur indicating the monodentate nature of the thiobenzoate ligand in these complexes. The coordination of monothiobenzoate ion in the complexes has been rationalized in terms of "hard" and "soft" acid-base concept.
Resumo:
A rapid method is described for the analysis of metal thiourea complexes of Zn, Cd, Hg and Cu by adding excess of chloramine-T and determining the excess iodometrically. Colloidal suspensions of metal sulphides (Cu, Hg, Zn, Cd) have been found to undergo rapid oxidation to sulphate quantitatively in acid medium by chloramine-T.
Resumo:
Transition-metal phosphites of cobalt and vanadium, [C4N2H12][Co(HPO3)(2)] (I), [C4N2H14][Co(HPO3)(2)] (II), [Co[C4H8N12)(H2PO3)(2)] (III),[C4N2H14][(VF)-F-III(HPO3)(2)]center dot H2O (IV), and[C3N2H5](2)[V-4(III)(H2O)(3)(HPO3)(4)(HPO4)(3)] (V), have been synthesized and characterized. Organophosphorus esters were employed to stabilize cobalt in tetrahedral coordination and also to prepare the low-dimensional structures, which are otherwise difficult to synthesize. The structures have one- (I, II, IV), two- (III) and three-dimensionally (V) extended networks built up by the linking of metal polyhedra and phosphite units. Another vanadyl phosphite, [C2N2H10][((VO)-O-IV)(3)(H2O) (HPO3)(4)]center dot H2O,([15]) was also prepared and investigated extensively by ESR, magnetic susceptibility, and other studies. All the compounds in the present study exhibit antiferromagnetic interactions. Well-established magnetic models have been used to fit the experimental data. The compounds havealso been characterized in detail by using UV/Vis spectroscopic studies.
Resumo:
Five-coordinate, neutral transition metal complexes of newly designed pyridine-2-ethyl-(3-carboxyhdeneamino)-3-(2-phenyl)-1,2-dihydroquinazoli n-4(3H)-one (L) were synthesized and characterized The structure of ligand is confirmed by single crystal X-ray diffraction studies The compounds were evaluated for the anti-inflammatory activity by carrageenan-induced rat paw edema model while their analgesic activity was determined by acetic acid-induced writhing test in mice wherein the transition metal complexes were found to be more active than the free ligand (C) 2010 Elsevier Masson SAS All rights reserved.
Resumo:
A theory of the insulator-metal transition in transition-metal compounds is developed in terms of the collapse of the effective energy gap which is a function of the thermally excited electron-hole pairs. This dependence is shown to arise from the hole-lattice interaction. The reaction of the lattice is found to be equivalent to generating an internal positive pressure (strain). Estimates show that the observed typical behaviour of the conductivity jump and the change of volume at the transition temperature can be explained by the present theory.
Resumo:
A detailed investigation of the hydrolysis of nickel in the lower concentration range has been made. The results have been analysed on the basis of 'Core + links' theory and on the assumption of the formation of one predominant complex. Evidence is obtained for the formation of Ni2 (OH)62- and its stability constant is calculated to be 1038.78
Resumo:
Expressions for the phase change Φ suffered by microwaves when transmitted through an artificial dielectric composed of metallic discs arranged in a three-dimensional array have been derived with different approaches as follows (i) molecular theory, (ii) electromagnetic theory and (iii) transmission line theory. The phase change depends on the distance t that the wave traverses inside the dielectric and also the spacing d between centre to centre of any two adjacent discs in the three principal directions. Molecular theory indicates Φ as an increasing function of t, whereas, the other two theories indicate Φ as an oscillatory function of t. The transmission line theory also exhibits Φ to be real or imaginary depending on t. Experimental values of Φ as a function of t have been obtained with the help of a microwave (3·2 cms wavelength) interferometer for two dielectrics having d as 1·91 cms and 2·22 cms respectively.
Resumo:
Bacillus subtilis BacB is an oxidase that is involved in the production of the antibiotic bacilysin. This protein contains two double-stranded beta-helix (cupin) domains fused in a compact arrangement. BacB crystallizes in three crystal forms under similar crystallization conditions. An interesting observation was that a slight perturbation of the crystallization droplet resulted in the nucleation of a different crystal form. An X-ray absorption scan of BacB suggested the presence of cobalt and iron in the crystal. Here, a comparative analysis of the different crystal forms of BacB is presented in an effort to identify the basis for the different lattices. It is noted that metal ions mediating interactions across the asymmetric unit dominate the different packing arrangements. Furthermore, a normalized B-factor analysis of all the crystal structures suggests that the solvent-exposed metal ions decrease the flexibility of a loop segment, perhaps influencing the choice of crystal form. The residues coordinating the surface metal ion are similar in the triclinic and monoclinic crystal forms. The coordinating ligands for the corresponding metal ion in the tetragonal crystal form are different, leading to a tighter packing arrangement. Although BacB is a monomer in solution, a dimer of BacB serves as a template on which higher order symmetrical arrangements are formed. The different crystal forms of BacB thus provide experimental evidence for metal-ion-mediated lattice formation and crystal packing.
Resumo:
A polymer containing electron-rich aromatic donors (1,5-dialkoxynaphthalene (DAN)) was coerced into a folded state by an external folding agent that contained an electron-deficient aromatic acceptor (pyromellitic diimide (PM)) unit. The donor-containing polymer was designed to carry a tertiary amine moiety in the linking segment, which served as an H-bonding site for reinforcing the interaction with the acceptor containing folding agent that also bore a carboxylic acid group. The H-bonding interaction of the carboxylic acid and the tertiary amine brings the PDI unit between two adjacent DAN units along the polymer backbone to induce charge-transfer (C-T) interactions, and this in turn causes the polymer chain to form a pleated structure. Evidence for the formation of such a pleated structure was obtained from NMR titration studies and also by monitoring the C-T band in their UV-visible spectra. By varying the length of the segment that links the PDI acceptor to the carboxylic acid group, we showed that the most effective folding agent was the one that had a single carbon spacer, as evident from the highest value of the association constant. Control experiments with propionic acid clearly demonstrated the importance of the additional C-T interactions for venerating the folded structures. Further, solution viscosity measurements in the presence of varying amounts of the folding agent revealed a gradual stiffening of the chain in the case of the PDI carrying carboxylic acid, whereas no such affect was seen in the case of simple propionic acid. These observations were supported by D FT calculations of the interactions of a dimeric model of the polymer with the various folding agents; here too the stability of the complex was seen to be highest in the case of the single carbon spacer.
Resumo:
Layered LiNi1/3Co1/3Mn1/3O2, which is isostructural with LiCoO2, is considered as a potential cathode material for Li-ion batteries. Submicrometer sized porous particles are useful for high discharge rates. The present work involves a synthesis of submicrometer sized porous particles of LiNi1/3Co1/3Mn1/3O2 using a triblock copolymer as a soft template. The precursor obtained from the reaction is heated at different temperatures between 600 and 900 degrees C for 6 h to get the final product samples. The compound attains increased crystallinity with an increase in the temperature of preparation. However, there is a decrease in the surface area and also in the porosity of the sample. Nevertheless, the LiNi1/3Co1/3Mn1/3O2 sample prepared at 900 degrees C exhibits a high rate capability and stable capacity retention on cycling. The electrochemical performance of LiNi1/3Co1/3Mn1/3O2 prepared in the absence of the polymer template is inferior to that of the sample prepared in the presence of the polymer template. (C) 2010 The Electrochemical Society. [DOI: 10.1149/1.3364944] All rights reserved.