832 resultados para poly (ether ether ketone)
Resumo:
A polystyrene-block-poly(ferrocenylethylmethylsilane) diblock copolymer, displaying a double-gyroid morphology when self-assembled in the solid state, has been prepared with a PFEMS volume fraction phi(PFMS)=0.39 and a total molecular weight of 64 000 Da by sequential living anionic polymerisation. A block copolymer with a metal-containing block with iron and silicon in the main chain was selected due to its plasma etch resistance compared to the organic block. Self-assembly of the diblock copolymer in the bulk showed a stable, double-gyroid morphology as characterised by TEM. SAXS confirmed that the structure belonged to the Ia3d space group.
Resumo:
The thermal properties, crystallization, and morphology of amphiphilic poly(D-lactide)-b-poly(N,N-dimethylamino- 2-ethyl methacrylate) (PDLA-b-PDMAEMA) and poly (L-lactide)-b-poly(N,N-dimethylamino-2-ethyl methacrylate) (PLLA-b-PDMAEMA) copolymers were studied and compared to those of the corresponding poly(lactide) homopolymers. Additionally, stereocomplexation of these copolymers was studied. The crystallization kinetics of the PLA blocks was retarded by the presence of the PDMAEMA block. The studied copolymers were found to be miscible in the melt and the glassy state. The Avrami theory was able to predict the entire crystallization range of the PLA isothermal overall crystallization. The melting points of PLDA/PLLA and PLA/PLA-b-PDMAEMA stereocomplexes were higher than those formed by copolymer mixtures. This indicates that the PDMAEMA block is influencing the stability of the stereocomplex structures. For the low molecular weight samples, the stereocomplexes particles exhibited a conventional disk-shape structure and, for high molecular weight samples, the particles displayed unusual star-like shape morphology.
Resumo:
Benzene-1,2-dioxyacetic acid (bdoaH2) reacts with Mn(CH3CO2)2·4H2O in an ethanol-water mixture to give the manganese(II) complex [Mn(bdoa)(H2O)3]. The X-ray crystal structure of the complex shows the metal to be pseudo seven-coordinate. The quadridentate bdoa2− dicar☐ylate ligand forms an essentially planar girdle around the metal, being strongly bondedtransoid by a car☐ylate oxygen atom from each of the two car☐ylate moieties (mean MnO 2.199A˚) and also weakly chelated by the two internal ether oxygen atoms (mean MnO 2.413A˚). The coordination sphere about the manganese is completed by three water molecules (mean MnO 2.146A˚) lying in a meridional plane orthogonal to that of the bdoa2− ligand. Magnetic, conductivity and voltammetry data for the complex are given, and its use as a catalyst for the disproportionisation of H2O2 is described.
Resumo:
Base catalysed reaction of the tricyclic ketone (6 ⇌ 7) with methylvinyl ketone gave the tetracyclic ketols, 11, 13, 15, 16, and the pentacyclic ketols, 12, 17. With phenylvinyl ketone, the tetracyclic ketol (18) was formed. The stereostructures of the ketols were identified by X-Ray diffraction. The base-catalysed title reactions gave the cyclic ketols and derived compounds shown below whose structures were identified by X-ray diffraction.
Resumo:
The species [{Sn(C2H2iPr3-2,4,6)2}3] has been obtained in a simple, essentially quantitative, synthesis from SnCl2 and ArLi in diethyl ether at low temperature. The crystal structure analysis confirms the trimeric nature of the molecular units but reveals some unusual features. The crystal contains the unusual feature of an asymmetric unit that consists of three units of [{SnAr2}3] in P21/c; the molecular unit is a scalene triangle, showing high consistency between the three molecules, in contrast to analogous trimeric species of silicon or germanium. The SnSn bonds are lengthened (average value 2.942 Å) owing to steric crowding.
Resumo:
Metallation of ArBr (Ar = 2,6-diethylphenyl) with Li powder in diethyl ether, followed by addition of stannous chloride at low temperature does not give the expected oligomeric diarylstannane but an essentially quantitative yield of the novel tetrastannabutane [{SnAr2}3SnArBr]. Some reactions of the new species are reported.
Resumo:
PEGylated organosilica nanoparticles have been synthesized through self-condensation of (3-mercaptopropyl)trimethoxysilane in dimethyl sulfoxide into thiolated nanoparticles with their subsequent reaction with methoxypoly(ethylene glycol) maleimide. The PEGylated nanoparticles showed excellent colloidal stability over a wide range of pH in contrast to the parent thiolated nanoparticles, which have a tendency to aggregate irreversibly under acidic conditions (pH < 3.0). Due to the presence of a poly(ethylene glycol)-based corona, the PEGylated nanoparticles are capable of forming hydrogen-bonded interpolymer complexes with poly(acrylic acid) in aqueous solutions under acidic conditions, resulting in larger aggregates. The use of hydrogen-bonding interactions allows more efficient attachment of the nanoparticles to surfaces. The alternating deposition of PEGylated nanoparticles and poly(acrylic acid) on silicon wafer surfaces in a layer-by-layer fashion leads to multilayered coatings. The self-assembly of PEGylated nanoparticles with poly(acrylic acid) in aqueous solutions and at solid surfaces was compared to the behavior of linear poly(ethylene glycol). The nanoparticle system creates thicker layers than the poly(ethylene glycol), and a thicker layer is obtained on a poly(acrylic acid) surface than on a silica surface, because of the effects of hydrogen bonding. Some implications of these hydrogen-bonding-driven interactions between PEGylated nanoparticles and poly(acrylic acid) for pharmaceutical formulations are discussed.
Resumo:
The micellization of F127 (E98P67E98) in dilute aqueous solutions of polyethylene glycol (PEG6000 and PEG35000) and poly(vinylpyrrolidone) (PVP K30 and PVP K90) is studied. The average hydrodynamic radius (rh,app) obtained from the dynamic light scattering technique increased with increase in PEG concentration but decreased on addition of PVP, results which are consistent with interaction of the micelles with PEG and the formation of micelles clusters, but no such interaction occurs with PVP. Tube inversion was used to determine the onset of gelation. The critical concentration of F127 for gelation increased on addition of PEG and of PVP K30 but decreased on addition of PVP K90. Small-angle X-ray scattering (SAXS) was used to show that the 30 wt% F127 gel structure (fcc) was independent of polymer type and concentration, as was the d-spacing and so the micelle hard-sphere radius. The maximum elastic modulus (G0 max) of 30 wt% F127 decreased from its value for water alone as PEG was added, but was little changed by adding PVP. These results are consistent with the packed-micelles in the 30 wt% F127 gel being effectively isolated from the polymer solution on the microscale while, especially for the PEG, being mixed on the macroscale.
Resumo:
Interpenetrating polymeric networks based on sodium alginate and poly(N-isopropylacrylamide) (PNIPAAm) covalently crosslinked with N,N′-methylenebisacrylamide have been investigated using rheology, thermogravimetry, differential scanning calorimetry, X-ray diffraction measurements and scanning electron microscopy (SEM). An improved elastic response of the samples with a higher PNIPAAm content and increased amount of crosslinking agent was found. The temperature-responsive behaviour of the hydrogel samples was evidenced by viscoelastic measurements performed at various temperatures. It is shown that the properties of these gels can be tuned according to composition, amount of crosslinking agent and temperature changes. X-ray scattering analysis revealed that the hydrophobic groups are locally segregated even in the swollen state whilst cryo-SEM showed the highly heterogeneous nature of the gels.
Resumo:
We explore the influence of a rotating collector on the internal structure of poly(ε-caprolactone) fibres electrospun from a solution in dichloroethane. We find that above a threshold collector speed, the mean fibre diameter reduces as the speed increases and the fibres are further extended. Small-angle and wide-angle X-ray scattering techniques show a preferred orientation of the lamellar crystals normal to the fibre axis which increases with collector speed to a maximum and then reduces. We have separated out the processes of fibre alignment on the collector and the orientation of crystals within the fibres. There are several stages to this behaviour which correspond to the situations (a) where the collector speed is slower than the fibre spinning rate, (b) the fibre is mechanically extended by the rotating collector and (c) where the deformation leads to fibre fracture. The mechanical deformation leads to a development of preferred orientation with extension which is similar to the prediction of the pseudo-affine deformation model and suggests that the deformation takes place during the spinning process after the crystals have formed.
Resumo:
The wide angle X-ray scattering from glassy poly(2-hydroxyethyl methacrylate) (1) is presented together with that obtained from oriented and swollen samples. The scattering is compared with that previously reported for poly(methyl methacrylate) (PMMA) and the structure discussed in relation to this polymer. The chain conformation is similar to that of PMMA, although some measure of molecular interlocking appears to reduce the main interchain peak while correlated regions of inaccessible free volume between the substantial side groups are held responsible for the main peak at s = 1,25 Å−1.
Resumo:
We present a new methodology that couples neutron diffraction experiments over a wide Q range with single chain modelling in order to explore, in a quantitative manner, the intrachain organization of non-crystalline polymers. The technique is based on the assignment of parameters describing the chemical, geometric and conformational characteristics of the polymeric chain, and on the variation of these parameters to minimize the difference between the predicted and experimental diffraction patterns. The method is successfully applied to the study of molten poly(tetrafluoroethylene) at two different temperatures, and provides unambiguous information on the configuration of the chain and its degree of flexibility. From analysis of the experimental data a model is derived with CC and CF bond lengths of 1.58 and 1.36 Å, respectively, a backbone valence angle of 110° and a torsional angle distribution which is characterized by four isometric states, namely a split trans state at ± 18°, giving rise to a helical chain conformation, and two gauche states at ± 112°. The probability of trans conformers is 0.86 at T = 350°C, which decreases slightly to 0.84 at T = 400°C. Correspondingly, the chain segments are characterized by long all-trans sequences with random changes in sign, rather anisotropic in nature, which give rise to a rather stiff chain. We compare the results of this quantitative analysis of the experimental scattering data with the theoretical predictions of both force fields and molecular orbital conformation energy calculations.
Resumo:
Determination of the local structure of a polymer glass by scattering methods is complex due to the number of spatial and orientational correlations, both from within the polymer chain (intrachain) and between neighbouring chains (interchain), from which the scattering arises. Recently considerable advances have been made in the structural analysis of relatively simple polymers such as poly(ethylene) through the use of broad Q neutron scattering data tightly coupled to atomistic modelling procedures. This paper presents the results of an investigation into the use of these procedures for the analysis of the local structure of a-PMMA which is chemically more complex with a much greater number of intrachain structural parameters. We have utilised high quality neutron scattering data obtained using SANDALS at ISIS coupled with computer models representing both the single chain and bulk polymer system. Several different modelling approaches have been explored which encompass such techniques as Reverse Monte Carlo refinement and energy minimisation and their relative merits and successes are discussed. These different approaches highlight structural parameters which any realistic model of glassy atactic PMMA must replicate.
Resumo:
In the biomimetic design two hydrophobic pentapetides Boc-Ile-Aib-Leu-Phe-Ala-OMe ( I) and Boc-Gly-Ile-Aib-Leu-Phe-OMe (II) (Aib: alpha-aminoisobutyric acid) containing one Aib each are found to undergo solvent assisted self-assembly in methanol/water to form vesicular structures, which can be disrupted by simple addition of acid. The nanovesicles are found to encapsulate dye molecules that can be released by the addition of acid as confirmed by fluorescence microscopy and UV studies. The influence of solvent polarity on the morphology of the materials generated from the peptides has been examined systematically, and shows that fibrillar structures are formed in less polar chloroform/petroleum ether mixture and vesicular structures are formed in more polar methanol/water. Single crystal X-ray diffraction studies reveal that while beta-sheet mediated self-assembly leads to the formation of fibrillar structures, the solvated beta-sheet structure leads to the formation of vesicular structures. The results demonstrate that even hydrophobic peptides can generate vesicular structures from polar solvent which may be employed in model studies of complex biological phenomena.