931 resultados para planets and satellites : formation
Resumo:
Methylamine and sulfate are compounds commonly found in wastewaters. This study aimed to determine the methanogenic potential of anaerobic reactors containing these compounds and to correlate it with their microbial communities. Batch experiments were performed at different methylamine/sulfate ratios of 0.71, 1.26 and 2.18 (with respect to mass concentration). Control and experimental runs were inoculated with fragmented granular sludge. The maximum specific methane formation rates were approximately 2.3 mmol CH4 L-1 g TVS-1 day-1 for all conditions containing methylamine, regardless of sulfate addition. At the end of the experiment, total ammonium-N and methane formation were proportional to the initial concentrations of methylamine. In the presence of methylamine and sulfate, Firmicutes (46%), Deferribacteres (13%) and Proteobacteria (12%) were the predominant phyla of the Bacteria domain, while Spirochaetes (40%), Deferribacteres (17%) and Bacteroidetes (16%) predominated in the presence of methylamine only. There was no competition for methylamine between sulfate-reducing bacteria and methanogenic archaea.
Resumo:
Glasses having the composition (100 - x)As2P2S8-xGa(2)S(3) with x ranging from 0 to 50% were investigated to determine the compositional effect on properties and local structure. The glass transition temperature (T-g) and the stability parameter against crystallization (T-x - T-g) increased with the addition of Ga2S3. The structure of these glasses was probed by Raman scattering, Fourier transform infrared (FT-IR) and P-31 nuclear magnetic resonance. on the basis of the observed vibrations and the strength of the P-31-P-31 homonuclear magnetic dipolar coupling, two scenarios can be proposed for the structural evolution induced by the addition of Ga2S3. For x <= 20% we may have the formation of GaS4E- groups (E = nonbonding electron), and for x >= 30% we have depolymerization of the As2P2S8 units and the formation of a network of GaPS4 units with each PS4/2 unit (Q(4)) species carrying a single positive formal charge.
Resumo:
The sol-gel method combined with a spin-coating technique has been successfully applied for the preparation of rare-earth doped silica:germania films used for the fabrication of erbium-doped waveguide amplifiers (EDWA), presenting several advantages over other methods for the preparation of thin films. As with other methods, the sol-gel route also shows some drawbacks, such as cracks related to the thickness of silica films and high hydrolysis rate of certain precursors such as germanium alkoxides. This article describes the preparation and optical characterization of erbium and ytterbium co-doped SiO2:GeO2 crack-free thick films prepared by the sol-gel route combined with a spin-coating technique using a chemically stable non-aqueous germanium oxide solution as an alternative precursor. The non-crystalline films obtained are planar waveguides exhibiting a single mode at 1,550 nm with an average thickness of 3.9 mu m presenting low percentages of porosity evaluated by the Lorentz-Lorenz Effective Medium Approximation, and low stress, according to the refractive index values measured in both transversal electric and magnetic polarizations. Weakly confining core layers (0.3% < Delta n < 0.75%) were obtained according to the refractive index difference between the core and buffer layers, suggesting that low-loss coupling EDWA may be obtained. The life time of the erbium I-4(13/2) metastable state was measured as a function of erbium concentration in different systems and based on these values it is possible to infer that the hydroxyl group was reduced and the formation of rare-earth clusters was avoided.
Resumo:
Thin films were prepared using glass precursors obtained in the ternary system NaPO(3)-BaF(2)-WO(3) and the binary system NaPO(3)-WO(3) with high concentrations of WO(3) (above 40% molar). Vitreous samples have been used as a target to prepare thin films. Such films were deposited using the electron beam evaporation method onto soda-lime glass substrates. Several structural characterizations were performed by Raman spectroscopy and X-ray Absorption Near Edge Spectroscopy (XANES) at the tungsten L(I) and L(III) absorption edges. XANES investigations showed that tungsten atoms are only sixfold coordinated (octahedral WO(6)) and that these films are free of tungstate tetrahedral units (WO(4)). In addition, Raman spectroscopy allowed identifying a break in the linear phosphate chains as the amount of WO(3) increases and the formation of P-O-W bonds in the films network indicating the intermediary behavior of WO(6) octahedra in the film network. Based on XANES data, we suggested a new attribution of several Raman absorption bands which allowed identifying the presence of W-O and W=O terminal bonds and a progressive apparition of W-O-W bridging bonds for the most WO(3) concentrated samples (above 40% molar) attributed to the formation of WO(6) clusters. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
INTRODUÇÃO: Os acidentes causados por ouriços-do-mar são as ocorrências por animais marinhos mais comuns no país. O ouriço-do-mar preto (Echinometra lucunter) é a espécie que mais causa ferimentos em banhistas. MÉTODOS: Este trabalho registrou e estudou 314 agravos com ênfase nas manifestações clínicas iniciais observadas e suas implicações na terapêutica recomendada. RESULTADOS: Todos os acidentes foram causados pelo ouriço-do-mar preto e aconteceram em banhistas. As lesões e a dor foram associadas ao trauma causado pela penetração das espículas (não ocorreu inflamação ou dor imediata sem pressão sobre os pontos comprometidos). As complicações deste tipo de acidente, incluindo infecções e granulomas de corpo estranho, estão associadas com a permanência das espículas nos ferimentos. CONCLUSÕES: Foi confirmado o fato do acidente causado por esta espécie ser o mais comum no Brasil e apresentar caráter traumático, sendo a principal recomendação a retirada precoce dos espinhos para prevenção de complicações tardias como as infecções e formação de granulomas de corpo estranho.
Resumo:
Bismuth titanatc-Bi(4)Ti(3)O(12) (BIT) with wide application in the electronic industry as capacitors, memory devices and sensors is the simplest compound in the Aurivillius family, which consists of (Bi(2)O(2))(2+) sheets alternating with (Bi(2)T(i)3O(10))(2-) perovskite-like layers. The synthesis of more resistive BIT ceramics would be preferable advance in obtaining of well-densified ceramic with small grains randomly oriented to limit the conductivity along the (Bi(2)O(2))(2+) layers. Having in mind that the conventional ceramic route for the synthesis can lead to non-stoichiometry in composition, in consequence of the undesirable loss in bismuth content through volatilization of Bi(2)O(3) at elevated temperature, our efforts were addressed to preparation of BIT by mechanical activation the constituent oxides. The nucleation and phase formation of BIT, crystal structure, microstructure, powder particle size and specific surface area were followed by XRD, Rietveld refinement analysis, thermal analysis, scanning electron microscopy (SEM) and the BET specific surface area measurements. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The aim of this study was to evaluate and compare the quantitative and qualitative inflammatory responses and bone formation potential after implantation of polyethylene tubes filled with a new calcium hydroxide containing sealer (MBPc) and Prolloot mineral trioxide aggregate (MIA). There were 48 Wistar rats divided in three groups: Group I (control group) empty polyethylene tubes were implanted in the extraction site; group II and III, polyethylene tubes were implanted filled with ProRoot mineral trioxide aggregate (MIA) and MBPc, respectively. At 7, 15, and 30 days after tube implantation, the animals were killed, the hemi-maxillas were removed and prepared to light microscopic analyses. The scores obtained were submitted to Kruskal-Wallis statistical test (p < 0.05). Significant differences between the materials were not observed. The results showed that both materials had similar biological response.
Resumo:
There is no consensus on whether the first mineralized layer, the hyaline layer, that is juxtaposed to root dentine is a variety of dentine or cementum or even a tissue of epithelial origin. Some suggest that there is no intermediate tissue between the acellular extrinsic fibre cementum (AEFC) and the root dentine. Here, to study hyaline layer formation and mineralization we examined by transmission electron microscopy the early stages of root development in upper molars from 10 to 13 day old Wistar rats. In addition to conventionally processed material, undemineralized and unstained sections were examined, which showed the deposition of fine mineral crystals in contact with the mineralized surface of root dentine. Early mineralization of the hyaline layer occurred in the region of the inner basement membrane, which persisted between the inner cellular layer of Hertwig's epithelial root sheath and the outer mineralized root dentine. When the root sheath began its fragment, collagen fibrils From the developing periodontal ligament began to insert into the mineralising hyaline layer, which was 0.5-0.8 mum wide. As the fragmentation of the root sheath HERS increased, more collagen fibrils appeared intermingled with the mineralising hyaline layer. In more advanced stages, when the hyaline layer had become fully mineralized and the formation of the AEFC began, the hyaline layer could no longer be identified. Thus, the hyaline layer is clearly discernible at early stages of periodontal development. Subsequently, it is masked by intermingling of cementum and dentine and therefore it is not possible to detect it in the formed roots of rat molars. (C) 2001 Elsevier B.V. Ltd. All rights reserved.
Resumo:
We have pointed Out that. zinc-based particles obtained from zinc acetate sol-gel route is a mixture of quantum-sized ZnO nanoparticles, zinc acetate, and zinc hydroxide double salt (Zn-HDS). Aiming the knowledge of the mechanisms involved in the formation of ZnO and Zn-HDS phases, the thermohydrolysis of ethanolic zinc acetate solutions induced by lithium hydroxide ([LiOH]/[Zn2+] = 0.1) or water ([H2O]/[Zn2+] = 0.05) addition was investigated at different isothermal temperatures (40, 50, 60 and 70 degrees C) by in situ measurements of turbidity, UV-vis absorption spectra and extended X-ray absorption fine structures (EXAFS). Only the growth of ZnO nanoparticles was observed in sol prepared with LiOH, while a two-step process was observed in that prepared with water addition, leading the fast growth of Zn-HDS and the formation of ZnO nanoparticles at advanced stage. A mechanism of dissolution/reprecipitation governed by the water/ethanol proportion is proposed to account for relative amount of ZnO. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The structure and the ionic conduction properties of siloxane-poly(oxypropylene) (PPO) hybrids doped with different potassium salts (KCF3SO3, KI, KClO4 and KNO2) are reported for two polymer molecular weights (300 and 4000 g/mol), labelled PPO300 and PPO4000, respectively. The doping concentration, related to the concentration of the ether type oxygen of the PPO chain, is the same whatever the salt and verifies [O]/[K] = 20. Ionic room temperature conductivity shows the highest value for the KCF3SO3 doped PPO4000 hybrid (4 x 10(-7)Omega(-1).cm(-1)). The structure of these hybrids was investigated by X-ray powder diffraction (XRPD) and X-ray absorption spectroscopy (EXAFS and XANES) at the potassium K-edge (3607 eV). XRPD results show that the hybrid matrix is always amorphous and the formation of secondary potassium phases is observed for all the samples, except for the KCF3SO3 doped PPO4000 hybrid. EXAFS results evidence a good correlation between the ionic conductivity and the presence of oxygen atoms as first neighbours around potassium.
Resumo:
We present a description of the external morphology and internal oral features of the tadpole of Scinax catharinae and comparisons with the known tadpoles of the S. catharinae group. Two characters of the external morphology present some intraspecific variation: the row of submarginal papillae, which can be uniseriate or absent, and the tail tip, which can be large or small, truncated or not. That said, the tadpole of S. catharinae presents some distinguishing features that differentiate it from other tadpoles in the S. catharinae group: i) the marginal row of papillae with alternate disposition, ii) the spiracle opening on the midline of the body, iii) longest snout length, and iv) largest interorbital distance. The studied species were segregated into five ecomorphological guilds, characterized by external morphological features, tadpole habitat use and vegetation formation of species range. The taxonomy of the S. catharinae group is complex, due to the morphological similarities among the adults. Larval characters could help in the resolution of the taxonomic and phylogenetic complexities, since the morphological differences among the tadpoles in this group seem more conspicuous than those found among the adults.
Resumo:
We report here new chemical evidence for the generation of radical molecular ions of compounds with a conjugated pi-system (polyene) in ESI and HR-MALDI mass spectrometry. The oxidation potential of the neutral polyenes was calculated by cyclic-voltammetry and the results compared with those previously published for other complex conjugated compounds that have also been shown to form M.+ in ESI-MS. This study clearly demonstrates the correlation between the oxidation potential and the formation of the M.+ for the polyenes studied.
Resumo:
We study e+-Na, e+-K, and e+-Rb scattering using the close coupling approach in the static and coupled static expansion schemes. We calculate partial wave elastic scattering phase shifts and total elastic and Ps formation cross sections up to an incident positron energy of 100 eV. The effect of the positronium formation channel on the elastic channel is found to be strong in all cases up to an incident positron energy of 10 eV. We also make an estimate of the total cross section which exhibits a minimum as a function of energy at low energies.
Resumo:
The nanoscale interactions between adjacent layers of layer-by-layer (LBL) films from poly(allylamine hydrochloride) (PAH) and azodye Brilliant Yellow (BY) have been investigated, with the films employed for optical storage and the formation of surface-relief gratings. Using Fourier transform infrared spectroscopy, we identified interactions involving SO3- groups from BY and NH3+ groups from PAH. These electrostatic interactions were responsible for the slow kinetics of writing in the optical storage experiments, due to a tendency to hinder photoisomerization and the subsequent reorientation of the azochromophores. The photoinduced birefringence did not saturate after one hour of exposure to the writing laser, whereas in azopolymer films, saturation is normally reached within a few minutes. on the other hand, the presence of such interactions prevented thermal relaxation of the chromophores after the writing laser was switched off, leading to a very stable written pattern. Moreover, the nanoscale interactions promoted mass transport for photoinscription of surface-relief gratings on PAH/BY LBL films, with the azochromophores being able to drag the inert PAH chains when undergoing the trans-cis-trans photoisomerization cycles. A low level of chromophore degradation was involved in the SRG photoinscription, which was confirmed with micro-Raman and fluorescence spectroscopies.
Resumo:
Siloxane-poly(oxyethylene) hybrids obtained by the sol-gel process and containing short polymer chain have been doped with potassium triflate (KCF3SO3). The local structure of these hybrids was investigated by X-ray absorption spectroscopy near the potassium K-edge. Small angle X-ray scattering was used to determine the structure at the nanometer scale. Results revealed that at low and medium potassium concentration (n = [O][K] >= 8, where n represents the molar ratio of ether-type oxygen atoms per alkaline cation) the cations interact mainly with the polymer chains, while at larger doping level (n < 8) the formation of a polyehter:KCF3SO3 Complex is observed. The nanoscopic structure of the hybrids is also affected by doping. By increasing the doping level, decreasing trends in the electronic density contrast between siloxane nanoparticles and polyether matrix and in the siloxane interparticle distance are observed. At high doping level the small angle X-ray scattering patterns are strongly modified, showing the disappearance of the correlation peak and the formation of a potassium-containing nanophase. (c) 2006 Elsevier B.V. All rights reserved.