987 resultados para phylogeny
Resumo:
BACKGROUND: In the past century, there has been a significant rise in life expectancy in almost all regions of the world, contributing to an increasingly older population. The aging of the population, in conjunction with urbanization and industrialization, has resulted in an important epidemiological transition marked by a widespread increase in the prevalence of chronic diseases and their sequelae. Current trends suggest that the transition will have a greater impact on developing countries compared to developed countries. An adequate response to the transition requires a strong emphasis on primary prevention and adequate resource allocation.
Resumo:
Genetic caste determination has been described in two populations of Pogonomyrmex harvester ants, each comprising a pair of interbreeding lineages. Queens mate with males of their own and of the alternate lineage and produce two types of diploid offspring, those fertilized by males of the queens' lineage which develop into queens and those fertilized by males of the other lineage which develop into workers. Each of the lineages has been shown to be itself of hybrid origin between the species Pogonomyrmex barbatus and Pogonomyrmex rugosus, which both have typical, environmentally determined caste differentiation. In a large scale genetic survey across 35 sites in Arizona, New Mexico and Texas, we found that genetic caste determination associated with pairs of interbreeding lineages occurred frequently (in 26 out of the 35 sites). Overall, we identified eight lineages with genetic caste determination that always co-occurred in the same complementary lineage pairs. Three of the four lineage pairs appear to have a common origin while their relationship with the fourth remains unclear. The level of genetic differentiation among these eight lineages was significantly higher than the differentiation between P. rugosus and P. barbatus, which questions the appropriate taxonomic status of these genetic lineages. In addition to being genetically isolated from one another, all lineages with genetic caste determination were genetically distinct from P. rugosus and P. barbatus, even when colonies of interbreeding lineages co-occurred with colonies of either putative parent at the same site. Such nearly complete reproductive isolation between the lineages and the species with environmental caste determination might prevent the genetic caste determination system to be swept away by gene flow.
Resumo:
Background. Human immunodeficiency virus type 1 (HIV-1) transmitted drug resistance (TDR) can compromise antiretroviral therapy (ART) and thus represents an important public health concern. Typically, sources of TDR remain unknown, but they can be characterized with molecular epidemiologic approaches. We used the highly representative Swiss HIV Cohort Study (SHCS) and linked drug resistance database (SHCS-DRDB) to analyze sources of TDR. Methods. ART-naive men who have sex with men with infection date estimates between 1996 and 2009 were chosen for surveillance of TDR in HIV-1 subtype B (N = 1674), as the SHCS-DRDB contains pre-ART genotypic resistance tests for >69% of this surveillance population. A phylogeny was inferred using pol sequences from surveillance patients and all subtype B sequences from the SHCS-DRDB (6934 additional patients). Potential sources of TDR were identified based on phylogenetic clustering, shared resistance mutations, genetic distance, and estimated infection dates. Results. One hundred forty of 1674 (8.4%) surveillance patients carried virus with TDR; 86 of 140 (61.4%) were assigned to clusters. Potential sources of TDR were found for 50 of 86 (58.1%) of these patients. ART-naive patients constitute 56 of 66 (84.8%) potential sources and were significantly overrepresented among sources (odds ratio, 6.43 [95% confidence interval, 3.22-12.82]; P < .001). Particularly large transmission clusters were observed for the L90M mutation, and the spread of L90M continued even after the near cessation of antiretroviral use selecting for that mutation. Three clusters showed evidence of reversion of K103N or T215Y/F. Conclusions. Many individuals harboring viral TDR belonged to transmission clusters with other Swiss patients, indicating substantial domestic transmission of TDR in Switzerland. Most TDR in clusters could be linked to sources, indicating good surveillance of TDR in the SHCS-DRDB. Most TDR sources were ART naive. This, and the presence of long TDR transmission chains, suggests that resistance mutations are frequently transmitted among untreated individuals, highlighting the importance of early diagnosis and treatment.
Resumo:
BACKGROUND: Complete mitochondrial genome sequences have become important tools for the study of genome architecture, phylogeny, and molecular evolution. Despite the rapid increase in available mitogenomes, the taxonomic sampling often poorly reflects phylogenetic diversity and is often also biased to represent deeper (family-level) evolutionary relationships. RESULTS: We present the first fully sequenced ant (Hymenoptera: Formicidae) mitochondrial genomes. We sampled four mitogenomes from three species of fire ants, genus Solenopsis, which represent various evolutionary depths. Overall, ant mitogenomes appear to be typical of hymenopteran mitogenomes, displaying a general A+T-bias. The Solenopsis mitogenomes are slightly more compact than other hymentoperan mitogenomes (~15.5 kb), retaining all protein coding genes, ribosomal, and transfer RNAs. We also present evidence of recombination between the mitogenomes of the two conspecific Solenopsis mitogenomes. Finally, we discuss potential ways to improve the estimation of phylogenies using complete mitochondrial genome sequences. CONCLUSIONS: The ant mitogenome presents an important addition to the continued efforts in studying hymenopteran mitogenome architecture, evolution, and phylogenetics. We provide further evidence that the sampling across many taxonomic levels (including conspecifics and congeners) is useful and important to gain detailed insights into mitogenome evolution. We also discuss ways that may help improve the use of mitogenomes in phylogenetic analyses by accounting for non-stationary and non-homogeneous evolution among branches.
Resumo:
Cephalochordates, urochordates, and vertebrates evolved from a common ancestor over 520 million years ago. To improve our understanding of chordate evolution and the origin of vertebrates, we intensively searched for particular genes, gene families, and conserved noncoding elements in the sequenced genome of the cephalochordate Branchiostoma floridae, commonly called amphioxus or lancelets. Special attention was given to homeobox genes, opsin genes, genes involved in neural crest development, nuclear receptor genes, genes encoding components of the endocrine and immune systems, and conserved cis-regulatory enhancers. The amphioxus genome contains a basic set of chordate genes involved in development and cell signaling, including a fifteenth Hox gene. This set includes many genes that were co-opted in vertebrates for new roles in neural crest development and adaptive immunity. However, where amphioxus has a single gene, vertebrates often have two, three, or four paralogs derived from two whole-genome duplication events. In addition, several transcriptional enhancers are conserved between amphioxus and vertebrates--a very wide phylogenetic distance. In contrast, urochordate genomes have lost many genes, including a diversity of homeobox families and genes involved in steroid hormone function. The amphioxus genome also exhibits derived features, including duplications of opsins and genes proposed to function in innate immunity and endocrine systems. Our results indicate that the amphioxus genome is elemental to an understanding of the biology and evolution of nonchordate deuterostomes, invertebrate chordates, and vertebrates.
Resumo:
C(4) photosynthesis is an adaptive trait conferring an advantage in warm and open habitats. It originated multiple times and is currently reported in 18 plant families. It has been recently shown that phosphoenolpyruvate carboxylase (PEPC), a key enzyme of the C(4) pathway, evolved through numerous independent but convergent genetic changes in grasses (Poaceae). To compare the genetics of multiple C(4) origins on a broader scale, we reconstructed the evolutionary history of the C(4) pathway in sedges (Cyperaceae), the second most species-rich C(4) family. A sedge phylogeny based on two plastome genes (rbcL and ndhF) has previously identified six fully C(4) clades. Here, a relaxed molecular clock was used to calibrate this tree and showed that the first C(4) acquisition occurred in this family between 19.6 and 10.1 Ma. According to analyses of PEPC-encoding genes (ppc), at least five distinct C(4) origins are present in sedges. Two C(4) Eleocharis species, which were unrelated in the plastid phylogeny, acquired their C(4)-specific PEPC genes from a single source, probably through reticulate evolution or a horizontal transfer event. Acquisitions of C(4) PEPC in sedges have been driven by positive selection on at least 16 codons (3.5% of the studied gene segment). These sites underwent parallel genetic changes across the five sedge C(4) origins. Five of these sites underwent identical changes also in grass and eudicot C(4) lineages, indicating that genetic convergence is most important within families but that identical genetic changes occurred even among distantly related taxa. These lines of evidence give new insights into the constraints that govern molecular evolution.
Resumo:
Understanding the role of gene duplications in establishing vertebrate innovations is one of the main challenges of Evo-Devo (evolution of development) studies. Data on evolutionary changes in gene expression (i.e., evolution of transcription factor-cis-regulatory elements relationships) tell only part of the story; protein function, best studied by biochemical and functional assays, can also change. In this study, we have investigated how gene duplication has affected both the expression and the ligand-binding specificity of retinoic acid receptors (RARs), which play a major role in chordate embryonic development. Mammals have three paralogous RAR genes--RAR alpha, beta, and gamma--which resulted from genome duplications at the origin of vertebrates. By using pharmacological ligands selective for specific paralogues, we have studied the ligand-binding capacities of RARs from diverse chordates species. We have found that RAR beta-like binding selectivity is a synapomorphy of all chordate RARs, including a reconstructed synthetic RAR representing the receptor present in the ancestor of chordates. Moreover, comparison of expression patterns of the cephalochordate amphioxus and the vertebrates suggests that, of all the RARs, RAR beta expression has remained most similar to that of the ancestral RAR. On the basis of these results together, we suggest that while RAR beta kept the ancestral RAR role, RAR alpha and RAR gamma diverged both in ligand-binding capacity and in expression patterns. We thus suggest that neofunctionalization occurred at both the expression and the functional levels to shape RAR roles during development in vertebrates.
Resumo:
DNA methylation is involved in a diversity of processes in bacteria, including maintenance of genome integrity and regulation of gene expression. Here, using Caulobacter crescentus as a model, we exploit genome-wide experimental methods to uncover the functions of CcrM, a DNA methyltransferase conserved in most Alphaproteobacteria. Using single molecule sequencing, we provide evidence that most CcrM target motifs (GANTC) switch from a fully methylated to a hemi-methylated state when they are replicated, and back to a fully methylated state at the onset of cell division. We show that DNA methylation by CcrM is not required for the control of the initiation of chromosome replication or for DNA mismatch repair. By contrast, our transcriptome analysis shows that >10% of the genes are misexpressed in cells lacking or constitutively over-expressing CcrM. Strikingly, GANTC methylation is needed for the efficient transcription of dozens of genes that are essential for cell cycle progression, in particular for DNA metabolism and cell division. Many of them are controlled by promoters methylated by CcrM and co-regulated by other global cell cycle regulators, demonstrating an extensive cross talk between DNA methylation and the complex regulatory network that controls the cell cycle of C. crescentus and, presumably, of many other Alphaproteobacteria.
Resumo:
Lentiviruses, the genus of retrovirus that includes HIV-1, rarely endogenize. Some lemurs uniquely possess an endogenous lentivirus called PSIV ("prosimian immunodeficiency virus"). Thus, lemurs provide the opportunity to study the activity of host defense factors, such as TRIM5α, in the setting of germ line invasion. We characterized the activities of TRIM5α proteins from two distant lemurs against exogenous retroviruses and a chimeric PSIV. TRIM5α from gray mouse lemur, which carries PSIV in its genome, exhibited the narrowest restriction activity. One allelic variant of gray mouse lemur TRIM5α restricted only N-tropic murine leukemia virus (N-MLV), while a second variant restricted N-MLV and, uniquely, B-tropic MLV (B-MLV); both variants poorly blocked PSIV. In contrast, TRIM5α from ring-tailed lemur, which does not contain PSIV in its genome, revealed one of the broadest antiviral activities reported to date against lentiviruses, including PSIV. Investigation into the antiviral specificity of ring-tailed lemur TRIM5α demonstrated a major contribution of a 32-amino-acid expansion in variable region 2 (v2) of the B30.2/SPRY domain to the breadth of restriction. Data on lemur TRIM5α and the prediction of ancestral simian sequences hint at an evolutionary scenario where antiretroviral specificity is prominently defined by the lineage-specific expansion of the variable loops of B30.2/SPRY.
Resumo:
How the apical-basal axis of polarity is established in embryogenesis is still a mystery in plant development. This axis appeared specifically compromised by mutations in the Arabidopsis GNOM gene. Surprisingly, GNOM encodes an ARF guanine-nucleotide exchange factor (ARF-GEF) that regulates the formation of vesicles in membrane trafficking. In-depth functional analysis of GNOM and its closest relative, GNOM-LIKE 1 (GNL1), has provided a mechanistic explanation for the development-specific role of a seemingly mundane trafficking regulator. The current model proposes that GNOM is specifically involved in the endosomal recycling of the auxin-efflux carrier PIN1 to the basal plasma membrane in provascular cells, which in turn is required for the accumulation of the plant hormone auxin at the future root pole through polar auxin transport. Thus, the analysis of GNOM highlights the importance of cell-biological processes for a mechanistic understanding of development.
Resumo:
The genomic era has revealed that the large repertoire of observed animal phenotypes is dependent on changes in the expression patterns of a finite number of genes, which are mediated by a plethora of transcription factors (TFs) with distinct specificities. The dimerization of TFs can also increase the complexity of a genetic regulatory network manifold, by combining a small number of monomers into dimers with distinct functions. Therefore, studying the evolution of these dimerizing TFs is vital for understanding how complexity increased during animal evolution. We focus on the second largest family of dimerizing TFs, the basic-region leucine zipper (bZIP), and infer when it expanded and how bZIP DNA-binding and dimerization functions evolved during the major phases of animal evolution. Specifically, we classify the metazoan bZIPs into 19 families and confirm the ancient nature of at least 13 of these families, predating the split of the cnidaria. We observe fixation of a core dimerization network in the last common ancestor of protostomes-deuterostomes. This was followed by an expansion of the number of proteins in the network, but no major dimerization changes in interaction partners, during the emergence of vertebrates. In conclusion, the bZIPs are an excellent model with which to understand how DNA binding and protein interactions of TFs evolved during animal evolution.
Resumo:
The cichlids of East Africa are renowned as one of the most spectacular examples of adaptive radiation. They provide a unique opportunity to investigate the relationships between ecology, morphological diversity, and phylogeny in producing such remarkable diversity. Nevertheless, the parameters of the adaptive radiations of these fish have not been satisfactorily quantified yet. Lake Tanganyika possesses all of the major lineages of East African cichlid fish, so by using geometric morphometrics and comparative analyses of ecology and morphology, in an explicitly phylogenetic context, we quantify the role of ecology in driving adaptive speciation. We used geometric morphometric methods to describe the body shape of over 1000 specimens of East African cichlid fish, with a focus on the Lake Tanganyika species assemblage, which is composed of more than 200 endemic species. The main differences in shape concern the length of the whole body and the relative sizes of the head and caudal peduncle. We investigated the influence of phylogeny on similarity of shape using both distance-based and variance partitioning methods, finding that phylogenetic inertia exerts little influence on overall body shape. Therefore, we quantified the relative effect of major ecological traits on shape using phylogenetic generalized least squares and disparity analyses. These analyses conclude that body shape is most strongly predicted by feeding preferences (i.e., trophic niches) and the water depths at which species occur. Furthermore, the morphological disparity within tribes indicates that even though the morphological diversification associated with explosive speciation has happened in only a few tribes of the Tanganyikan assemblage, the potential to evolve diverse morphologies exists in all tribes. Quantitative data support the existence of extensive parallelism in several independent adaptive radiations in Lake Tanganyika. Notably, Tanganyikan mouthbrooders belonging to the C-lineage and the substrate spawning Lamprologini have evolved a multitude of different shapes from elongated and Lamprologus-like hypothetical ancestors. Together, these data demonstrate strong support for the adaptive character of East African cichlid radiations.
Resumo:
Arbuscular mycorrhizal fungi (AMF) are an ecologically important group of fungi. Previous studies showed the presence of divergent copies of beta-tubulin and V-type vacuolar H+-ATPase genes in AMF genomes and suggested horizontal gene transfer from host plants or mycoparasites to AMF. We sequenced these genes from DNA isolated from an in vitro cultured isolate of Glomus intraradices that was free of any obvious contaminants. We found two highly variable beta-tubulin sequences and variable H+-ATPase sequences. Despite this high variation, comparison of the sequences with those in gene banks supported a glomeromycotan origin of G. intraradices beta-tubulin and H+-ATPase sequences. Thus, our results are in sharp contrast with the previously reported polyphyletic origin of those genes. We present evidence that some highly divergent sequences of beta-tubulin and H+-ATPase deposited in the databases are likely to be contaminants. We therefore reject the prediction of horizontal transfer to AMF genomes. High differences in GC content between glomeromycotan sequences and sequences grouping in other lineages are shown and we suggest they can be used as an indicator to detect such contaminants. H+-ATPase phylogeny gave unexpected results and failed to resolve fungi as a natural group. beta-Tubulin phylogeny supported Glomeromeromycota as sister group of the Chytridiomycota. Contrasts between our results and trees previously generated using rDNA sequences are discussed.
Resumo:
We report the characterisation of 27 cardiovascular-related traits in 23 inbred mouse strains. Mice were phenotyped either in response to chronic administration of a single dose of the beta-adrenergic receptor blocker atenolol or under a low and a high dose of the beta-agonist isoproterenol and compared to baseline condition. The robustness of our data is supported by high trait heritabilities (typically H(2)>0.7) and significant correlations of trait values measured in baseline condition with independent multistrain datasets of the Mouse Phenome Database. We then focused on the drug-, dose-, and strain-specific responses to beta-stimulation and beta-blockade of a selection of traits including heart rate, systolic blood pressure, cardiac weight indices, ECG parameters and body weight. Because of the wealth of data accumulated, we applied integrative analyses such as comprehensive bi-clustering to investigate the structure of the response across the different phenotypes, strains and experimental conditions. Information extracted from these analyses is discussed in terms of novelty and biological implications. For example, we observe that traits related to ventricular weight in most strains respond only to the high dose of isoproterenol, while heart rate and atrial weight are already affected by the low dose. Finally, we observe little concordance between strain similarity based on the phenotypes and genotypic relatedness computed from genomic SNP profiles. This indicates that cardiovascular phenotypes are unlikely to segregate according to global phylogeny, but rather be governed by smaller, local differences in the genetic architecture of the various strains.