919 resultados para phthalocyanine compounds
Resumo:
Molecular-level interactions are found to bind iron tetrasulfonated phthalocyanine (FeTsPc) and the polyelectrolyte poly(allylamine hydrochloride) (PAH) in electroactive layer-by-layer (LBL) films. These interactions have been identified by comparing Fourier transform infrared (FTIR) and Raman spectroscopy data from bulk samples of FeTsPc and PAH with those from FeTsPc/PAH LBL films. of particular importance were the SO3- -NH3 interactions that we believe to bind PAH and FeTsPc and the interactions between unprotonated amine groups of PAH and the coordinating metal of the phthalocyanine. The multilayer formation was monitored via UV-vis spectroscopy by measuring the increase in the Q band of FeTsPc at 676 nm. Film thickness estimated with profilometry was ca. I I Angstrom per bilayer for films adsorbed on glass. Reflection absorption infrared spectroscopy (RAIRS) revealed an anisotropy in the LBL film adsorbed on gold with FeTsPc molecules oriented perpendicularly to the substrate plane. Cyclic voltammograms showed reproducible pairs of oxidation-reduction peaks at 1.07 and 0.81 V, respectively, for a 50-bilayer PAH/FeTsPc film at 50 mV/s (vs Ag/Ag+). The peak shape and current dependence on the scan rate suggest that the process is a diffusion controlled charge transport. In the presence of dopamine, the electroactivity of FeTsPc/PAH LBL films vanishes due to a passivation effect. Dopamine activity is not detected either because the interaction between Fe atoms and NH2 groups prevents dopamine molecules from coordinating with the Fe atoms.
Resumo:
Organotin compounds, largely used as biocides in antifouling paints, are among the most toxic materials introduced into the aquatic environment. Sensitive analytical methods are thus required to characterize their occurrence in environmental and biological matrices. The comparison between two different photometric detectors in terms of analytical performance was carried out for the analysis of organotin compounds. A flame photometric detector (FPD) and a pulsed flame photometric detector (PFPD) were optimized. Their respective sensitivity, linearity range and selectivity were evaluated. Limits of detection obtained for a tributyltin compound (TBT) were 5.0 and 0.9 pg (as Sn) for the FPD and PFPD, respectively, using a 390 nm filter. The PFPD showed higher selectivity, besides reduced gas consumption in the flame, and is very attractive for organotin compound speciation in complex environmental matrices.
Resumo:
A fast and reliable method, based on high-performance liquid chromatography coupled to electrospray ionization ion trap tandem mass spectrometry (HPLC/ESI-ITMS), was developed to investigate the infusion prepared from the leaves of Byrsonima crassa Niedenzu (Malpighiaceae), a native plant used in Brazil against gastric disorders. The use of on-line reverse-phase HPLC/ESI-ITMS allowed separation of three major classes of compounds and identification of over 20 very polar compounds characterized as galloylquinic acids, proanthocyanidins, and flavonoid glycosides, as well as the dimeric flavonoid amentoflavone and minor amounts of galloyl hexose and galloyl saccharose. This approach provided data that will allow establishment of a method for a future standardization of the infusion. Copyright (C) 2005 John Wiley & Sons, Ltd.
Resumo:
In this work the influence of two different iron sources, Fe(NO3)(3) and complexed ferrioxalate (FeOx), on the degradation efficiency of 4-chlorophenol (4CP), malachite green, formaldehyde, dichloroacetic acid (DCA) and the commercial products of the herbicides diuron and tebuthiuron was studied. The oxidation of 4CP, DCA, diuron and tebuthiuron shows a strong dependence on the iron source. While the 4CP degradation is favored by the use of Fe(NO3)(3), the degradation of DCA and the herbicides diuron and tebuthiuron is most efficient when ferrioxalate is used. on the other hand, the degradation of malachite green and formaldehyde is not very influenced by the iron source showing only a slight improvement when ferrioxalate is used. In the case of formaldehyde, DCA, diuron and tebuthiuron, despite of the additional carbon introduced by the use of ferrioxalate, higher mineralization percentages were observed, confirming the beneficial effect of ferrioxalate on the degradation of these compounds. The degradation of tebuthiuron was studied in detail using a shallow pond type solar flow reactor of 4.5 L capacity and 4.5 cm solution depth. Solar irradiation of tebuthiuron at a flow rate of 9 L h(-1), in the presence of 10.0 mmol L-1 H2O2 and 1.0 mmol L-1 ferrioxalate resulted in complete conversion of this herbicide and 70% total organic carbon removal. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Solid-state compounds of general formula LnL(3)center dot nH(2)O, where Ln represents heavier lanthanides and yttrium and L is 2-chlorobenzylidenepyruvate, have been synthesized. Chemical analysis, simultaneous thermogravimetry-differential analysis (TG-DTA), differential scanning calorimetry (DSC), X-ray powder diffractometry, elemental analysis and infrared spectroscopy have been employed to characterize and to study the thermal behaviour of these compounds in dynamic air atmosphere.On heating these compounds decompose in four (Gd, Tb, Ho to Lu, Y) or five (Eu, Dy) steps. They lose the hydration water in the first step and the thermal decomposition of the anhydrous compounds up to 1200 degrees C occurs with the formation of the respective oxide, Tb4O7 and Ln(2)O(3) (Ln=Eu, Gd, Dy to Lu and Y) as final residue. The dehydration enthalpies found for these compounds (Eu, to Lu and Y) were: 65.77, 55.63, 86.89, 121.65, 99.80, 109.59, 131.02, 119.78, 205.46 and 83.11 kJ mol(-1), respectively.
Resumo:
The quantitative structure-activity relationship of a set of 19 flavonoid compounds presenting antioxidant activity was studied by means of PLS (Partial Least Squares) regression. The optimization of the structures and calculation of electronic properties were done by using the semiempirical method AMI. A reliable model (r(2) = 0.806 and q(2) = 0.730) was obtained and from this model it was possible to consider some aspects of the structure of the flavonoid compounds studied that are related with their free radical scavenging ability. The quality of the PLS model obtained in this work indicates that it can be used in order to design new flavonoid compounds that present ability to scavenge free radicals.
Resumo:
The present paper quantifies and develops the kinetic aspects involved in the mechanism of interplay between electron and ions presented elsewhere(1) for KhFek[Fe(CN)(6)](l)center dot mH(2)O (Prussian Blue) host materials. Accordingly, there are three different electrochemical processes involved in the PB host materials: H3O+, K+, and H+ insertion/extraction mechanisms which here were fully kinetically studied by means of the use of combined electronic and mass transfer functions as a tool to separate all the processes. The use of combined electronic and mass transfer functions was very important to validate and confirm the proposed mechanism. This mechanism allows the electrochemical and chemical processes involved in the KhFek[Fe(CN)(6)](l)center dot mH(2)O host and Prussian Blue derivatives to be understood. In addition, a formalism was also developed to consider superficial oxygen reduction. From the analysis of the kinetic processes involved in the model, it was possible to demonstrate that the processes associated with K+ and H+ exchanges are reversible whereas the H3O+ insertion process was shown not to present a reversible pattern. This irreversible pattern is very peculiar and was shown to be related to the catalytic proton reduction reaction. Furthermore, from the model, it was possible to calculate the number density of available sites for each intercalation/deintercalation processes and infer that they are very similar for K+ and H+. Hence, the high prominence of the K+ exchange observed in the voltammetric responses has a kinetic origin and is not related to the amount of sites available for intercalation/deintercalation of the ions.
Resumo:
The isobutyl amides pellitorine (compound 1) and 4,5-dihydropiperlonguminine (compound 2) were extracted from the seeds of Piper tuberculatum Jacq. (Piperaceae) in yields of 6.10 and 4.45% respectively. The acute toxicities to the velvetbean caterpillar, Anticarsia gemmatalis (Hubner) (Lepidoptera: Noctuidae), of extracts of seeds, leaves and stems of P. tuberculatum, and of compounds 1 and 2, were evaluated by means of contact bioassays. The extracts caused 80% mortality when doses higher than 800.00 mu g insect(-1) of extract of seeds, leaves and stems were administered to the velvetbean caterpillars. Compounds I and 2 showed 100% mortality at doses of 200 and 700 mu g insect(-1) respectively. The LD50 and LD90 values were respectively 31.3 and 104.5 mu g insect(-1) for compound 1, and 122.3 and 381.0 mu g insect(-1) for compound 2. The potential value of extracts and amides derived from P. tuberculatum as efficient insecticides against velvetbean caterpillars is discussed. (c) 2007 Society of Chemical Industry.
Resumo:
The relation between the composition and electronic structure of the perfectly inverse spinel compound Zn7-xMxSb2O12 (M = Ni and Co) has been studied by powder X-ray diffraction and X-ray photoelectron spectroscopy. Changes in the site occupancy are associated with shifts in the core levels as observed in the core level spectral analyses. The configuration of the density of states in the valence band due to the Co and Ni states can be observed in the valence band spectra. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
A study of the preconcentration of tioethers in air by means of the passage of gas flow on solid sorbents coated with sodium tetrachloropalladate was undertaken with the aim of achieving chemical fixation. This fixation presented high specificity and blocked the migration of the sorbed compound through the other active sites. The species obtained were selectively dissolved in organic solvents, resulting in the sulfur reduced compound concentration in the organic phase, which could be determined spectrophotometrically.
Resumo:
Solid state M-4-Me-BP compounds, where M stands for bivalent Mn, Fe, Co, Ni, Cu, Zn, Pb and 4-Me-BP is 4-methylbenzylidenepyruvate, have been synthesized. Simultaneous thermogravimetry-differential thermal analysis (TG-DTA), differential scanning calorimetry (DSC), X-ray powder diffractometry, infrared spectroscopy, elemental analysis, and complexometry were used to characterise and to study the thermal behaviour of these compounds. The results led to information about the composition, dehydration, thermal stability and thermal decomposition of the isolated complexes. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
Natural gums have been traditionally applied in cosmetics and the food industry, mainly as emulsification agents. Due to their biodegradability and excellent mechanical properties, new technological applications have been proposed involving their use with conventional polymers forming blends and composites. In this study, we take advantage of the polyelectrolyte character exhibited by the natural gum Chicha (Sterculia striata), extracted in the Northeastern region of Brazil, to produce electroactive nanocomposites. The nanocomposites were fabricated in the form of ultrathin films by combining a metallic phthalocyanine (nickel tetrasulfonated phthalocyanine, NiTsPc) and the Chicha gum in a tetralayer architecture, in conjunction with conventional polyelectrolytes. The presence of the gum led to an efficient adsorption of the phthalocyanine and enhanced the electrochemical response of the films. Upon combining the electrochemical and UV-vis absorption data, energy diagrams of the Chicha/NiTsPc-based system were obtained. Furthermore, modified electrodes based on gum/phthalocyanine films were able to detect dopamine at concentrations as low as 10(-5) M.
Resumo:
Anomalous thermal behavior on the EPR linewidths of Gd impurities diluted in Cc compounds has been observed. In metals, the local magnetic moment EPR linewidth, Delta H, is expected to increase linearly with the temperature. In contrast, in CexLa1-xOs2 the Gd EPR spectra show a nonlinear increase. In this work, the mechanisms that are responsible for the thermal behavior of the EPR lines in CexLa1-xOs2 are examined. We show that the exchange interaction between the local magnetic moments and the conduction electrons are responsible for the narrowing of the spectra at low temperatures. At high temperatures, the contribution to the linewidth of the exchange interaction between the local magnetic moments and the Ce ions has an exponential dependence on the excitation energy of the intermediate valent ions. A complete fitting of the EPR spectra for powdered samples is obtained, (C) 1998 American Institute of Physics. [S0021-8979(98)39911-9].
Resumo:
We developed a procedure to take advantage of the magnetic-field-modulation-frequency effect on the line shape of conduction-electron-spin resonance of graphite intercalation compounds (GIC's) to extract the absolute value of the in-plane resistivity. We calculated the power absorbed in each slice of the sample normal to the wave penetration, multiplied by a factor to account for the magnetic-field-modulation-frequency effect. Room-temperature spectra of stage-I AlCl3-intercalated GIC in both H-0 perpendicular-to c and H-0 parallel-to c configurations were fitted to the theoretical line shapes and the value of in-plane resistivity (and also the value of c-axis resistivity) obtained from the fitting parameters are in reasonable agreement with those from the literature.
Resumo:
The compounds [PdCl(2)L(2)] and [PdL(4)] (L=PPh(3), AsPh(3), SbPh(3)) were studied by thermogravimetric and differential thermal analyses in air. The residues of thermal decomposition consist of metallic palladium, except in the case of the complexes containing SbPh(3), when the residues are palladium and antimony mixtures in appropriate proportions with respect to the stoichiometry of the related complexes.