969 resultados para phosphorylation
Resumo:
Spatial regulation of tyrosine phosphorylation is important for many aspects of cell biology. However, phosphotyrosine accounts for less than 1% of all phosphorylated substrates, and it is typically a very transient event in vivo. These factors complicate the identification of key tyrosine kinase substrates, especially in the context of their extraordinary spatial organization. Here, we describe an approach to identify tyrosine kinase substrates based on their subcellular distribution from within cells. This method uses an unnatural amino acid-modified Src homology 2 (SH2) domain that is expressed within cells and can covalently trap phosphotyrosine proteins on exposure to light. This SH2 domain-based photoprobe was targeted to cellular structures, such as the actin cytoskeleton, mitochondria, and cellular membranes, to capture tyrosine kinase substrates unique to each cellular region. We demonstrate that RhoA, one of the proteins associated with actin, can be phosphorylated on two tyrosine residues within the switch regions, suggesting that phosphorylation of these residues might modulate RhoA signaling to the actin cytoskeleton. We conclude that expression of SH2 domains within cellular compartments that are capable of covalent phototrapping can reveal the spatial organization of tyrosine kinase substrates that are likely to be important for the regulation of subcellular structures.
Resumo:
Neurofilaments are typical structures of the neuronal cytoskeleton and participate in the formation and stabilization of the axonal and dendritic architecture. In this study, we have characterized a murine monoclonal antibody, FNP7, that is directed against the medium-sized neurofilament subunit NF-M. This antibody identifies a subset of neurons in the cerebral cortex of various species including human and in organotypic cultures of rat cortex. In the neocortex of all species examined, the antibody labels pyramidal cells in layers III, V, and VI, with a distinctive laminar distribution between architectonic boundaries. In comparison with other antibodies directed against NF-M, the FNP7 antibody identifies on blots two forms of NF-M that appear relatively late during development, at the time when dynamic growth of processes changes to the stabilization of the formed processes. Dephosphorylation with alkaline phosphatase unmasks the site, making it detectable for the FNP7 antibody. The late appearance suggests that the site is present during early development in phosphorylated form and with increasing maturation becomes dephosphorylated, mainly in dendrites. This event may relate to changes in cytoskeleton stability in a late phase of dendritic maturation. Furthermore, mainly corticofugal projections and only few callosal axons are stained, suggesting a differential phosphorylation in a subset of axons. The antibody provides a useful marker to study subsets of pyramidal cells in vivo, in vitro, and under experimental conditions.
Resumo:
Thiazolidinediones (TZDs) are peroxisome proliferator-activated receptor gamma (PPARγ) agonists used to treat type 2 diabetes. TZD treatment induces side effects such as peripheral fluid retention, often leading to discontinuation of therapy. Previous studies have shown that PPARγ activation by TZD enhances the expression or function of the epithelial sodium channel (ENaC) through different mechanisms. However, the effect of TZDs on ENaC activity is not clearly understood. Here, we show that treating Xenopus laevis oocytes expressing ENaC and PPARγ with the TZD rosiglitazone (RGZ) produced a twofold increase of amiloride-sensitive sodium current (Iam), as measured by two-electrode voltage clamp. RGZ-induced ENaC activation was PPARγ-dependent since the PPARγ antagonist GW9662 blocked the activation. The RGZ-induced Iam increase was not mediated through direct serum- and glucocorticoid-regulated kinase (SGK1)-dependent phosphorylation of serine residue 594 on the human ENaC α-subunit but by the diminution of ENaC ubiquitination through the SGK1/Nedd4-2 pathway. In accordance, RGZ increased the activity of ENaC by enhancing its cell surface expression, most probably indirectly mediated through the increase of SGK1 expression.
Resumo:
Abstract : Apoptosis is an evolutionarily conserved cellular suicide mechanism that can be triggered by activation of various pathways, such as the Fas-Pathway. Upon stimulation by its specific ligand (FasL), present at the surface of Cytotoxic Τ lymphocytes, the death receptor Fas initiates a signaling cascade culminating in the activation of cellular caspases, leading thus to cell death of the target cell (e.g. transformed cell). Dysregulation of apoptosis in general, and of Fas pathway in particular, was shown to contribute to pathogenesis of cancers and many human diseases. Even though, during the last decades the molecular mechanisms of apoptosis have been widely studied, it is important to better understand the mechanisms leading to apoptosis, to improve our understanding of pathological processes, and generate more subtle apoptosis-modulating therapies to fight cancer and other diseases. In order to identify new components of the Fas signaling pathway, a screen based on the mechanism of RNA interference was undertaken. After a first and a second manual whole-kinome screen, we identified several strong positive hits that showed a protection against Fas ligand-induced apoptosis with distinct siRNAs, notably STK11, an interesting tumor suppressor mutated in several sporadic and inherited cancers. The STK11 functional characterization reveals that this kinase represents an apically acting general pro-apoptotic modulator of the extrinsic pathway (FasL, TRAIL, TNF-induced apoptosis), but not of the intrinsic apoptotic pathway. The STK11 action on the Fas pathway was shown to be dependent on its kinase activity, but independent of AMPK, a well-characterized STK11 downstream substrate. Furthermore, STK11 was shown to interact with caspase-8, a major mediator of the extrinsic pathway, and modulate its activity through an unclear mechanism that may involve an STK11-dependant caspase-8 phosphorylation. This modification may allow a proper caspase-8 polyubiquitination and activation in p62 sequestosmes aggregates, but may also increase the activation of caspase-8 at the DISC level. In addition, we observed that STK11 modulate not only the apoptotic pathway induced by Fas engagement, but also FasL-induced JNK and NF- KB, sustaining an upstream role of this kinase in the pathway. In conclusion, our report reveals that STK11 is an important pro-apoptotic modulator of the Fas pathway in particular, and extrinsic pathway in general. Our finding could explain, at least partially, why inactivating mutations of the kinase leads to cancer, by allowing resistance to apoptosis and accordingly evasion of immune surveillance. Résumé : L'apoptose est un mécanisme de suicide cellulaire, conservé dans diverses espèces, et qui au niveau moléculaire est déclenché par différentes voies de signalisation, comme par exemple lors de l'activation du récepteur Fas. La liaison du ligand FasL au récepteur de la mort Fas, induit une cascade de signalisation qui conduit à l'activation des caspases. Les lymphocytes Τ cytotoxiques peuvent utiliser la voie Fas pour induire la mort et se débarrasser de cellules dangereuses pour le reste de l'organisme, tel que les cellules transformées. La dysrégulation de l'apoptose en général, et de la voie Fas en particulier, peut contribuer à diverses maladies telles que le cancer. Même si ces dernières décennies, les mécanismes moléculaires conduisant à l'apoptose ont été extensivement étudiés, il reste néanmoins important de mieux comprendre le phénomène d'apoptose, pour améliorer notre compréhension des processus pathologiques, mais surtout dans le but de développer de nouvelles thérapies ciblant l'apoptose contre le cancer et d'autres pathologies. Pour identifier de nouveau constituants de la voie Fas, un criblage génétique basé sur l'interférence à l'ARN a été entrepris. Après un premier et un deuxième criblage d'une librairie du kinome, nous avons identifié différentes protéines qui pourraient jouer un rôle positif dans la voie Fas, et en particulier la protéine suppresseur de tumeur STK11, qui est fréquemment mutée dans divers cancers sporadiques et héréditaires. La caractérisation fonctionnelle de STK11 a révélé que cette kinase était un modulateur apical de la voie extrinsèque de l'apoptose en général (Fas, TNF, TRAIL), mais pas de la voie intrinsèque. L'action de STK11 sur la voie Fas est dépendante de sa fonction kinase, mais indépendante de l'AMPK, un substrat bien caractérisé de STK11. De plus, STK11 interagît avec la caspase-8, un constituant majeur de la voie Fas, et module son activité, par un mécanisme encore peu clair qui pourrait impliquer une phosphorylation de la caspase-8 par STK11. Cette modification pourrait permettre une activation optimale de la caspase-8 en jouant un rôle dans le processus de polyubiquitination de la caspase-8, phénomène qui semble être important pour l'activation de la caspase-8 dans des agrégats protéiques avec p62, mais qui pourrait aussi augmenter son activation au niveau du DISC. Finalement, nous avons observé que STK11 modulait non seulement la voie apoptotique déclenchée par l'activation de Fas, mais aussi les voies non-apoptotiques de Fas, comme JNK et NF-KB. En conclusion notre étude, révèle que STK11 est un important modulateur pro- apoptotique de la voie Fas, et de la voie extrinsèque en général. Cette découverte pourrait expliquer, du moins partiellement, pourquoi les mutations inactivatrices de STK11 conduisent au cancer, par une augmentation de la résistance à l'apoptose et donc par l'évasion de la surveillance immunitaire.
Resumo:
The c-Jun N-terminal kinase (JNK) is critical for cell survival, differentiation, apoptosis and tumorigenesis. This signalling pathway requires the presence of the scaffold protein Islet-Brain1/c-Jun N-terminal kinase interacting protein-1 (IB1/JIP-1). Immunolabeling and in situ hybridisation of bladder sections showed that IB1/JIP-1 is expressed in urothelial cells. The functional role of IB1/JIP-1 in the urothelium was therefore studied in vivo in a model of complete rat bladder outlet obstruction. This parietal stress, which is due to urine retention, reduced the content of IB1/JIP-1 in urothelial cells and consequently induced a drastic increase in JNK activity and AP-1 binding activity. Using a viral gene transfer approach, the stress-induced activation of JNK was prevented by overexpressing IB1/JIP-1. Conversely, the JNK activity was increased in urothelial cells where the IB1/JIP-1 content was experimentally reduced using an antisense RNA strategy. Furthermore, JNK activation was found to be increased in non-stressed urothelial cells of heterozygous mice carrying a selective disruption of the IB1/JIP-1 gene. These data established that mechanical stress in urothelial cells in vivo induces a robust JNK activation as a consequence of regulated expression of the scaffold protein IB1/JIP-1. This result highlights a critical role for that scaffold protein in the homeostasis of the urothelium and unravels a new potential target to regulate the JNK pathway in this tissue.
Resumo:
Hyperammonemia in neonates and infants affects brain development and causes mental retardation. We report that ammonium impaired cholinergic axonal growth and altered localization and phosphorylation of intermediate neurofilament protein in rat reaggregated brain cell primary cultures. This effect was restricted to the phase of early maturation but did not occur after synaptogenesis. Exposure to NH4Cl decreased intracellular creatine, phosphocreatine, and ADP. We demonstrate that creatine cotreatment protected axons from ammonium toxic effects, although this did not restore high-energy phosphates. The protection by creatine was glial cell-dependent. Our findings suggest that the means to efficiently sustain CNS creatine concentration in hyperammonemic neonates and infants should be assessed to prevent impairment of axonogenesis and irreversible brain damage.
Resumo:
SummaryRegulation of renal Na+ transport is essential for controlling blood pressure, as well as Na+ and K+ homeostasis. Aldosterone stimulates Na+ reabsorption in the aldosterone-sensitive distal nephron (ASDN), via the Na+-CI" cotransporter (NCC) in the distal convoluted tubule (DCT), and the epithelial Na+ channel (ENaC) in the late DCT, connecting tubule and collecting duct. Importantly, aldosterone increases NCC protein expression by an unknown post-translational mechanism. The ubiquitin-protein ligase Nedd4-2 is expressed along the ASDN and regulates ENaC: under aldosterone induction, the serum/glucocorticoid-regulated kinase SGK1 phosphorylates Nedd4-2 on S328, thus preventing the Nedd4-2/ENaC interaction, ubiquitylation and degradation of the channel. Here, we present evidence that Nedd4-2 regulates NCC. In transfected HEK293 cells, Nedd4-2 co-immunoprecipitates with NCC and stimulates NCC ubiquitylation at the cell surface. In Xenopus laevis oocytes, co- expression of NCC with wild-type Nedd4-2, but not its catalytically inactive mutant, strongly decreases NCC activity and surface expression. This inhibition is prevented by SGK1 in a kinase-dependent manner. Moreover, we show that NCC expression is up-regulated in inducible renal tubule-specific Nedd4-2 knockout mice and in mDCT15 cells silenced for Nedd4-2. On the other hand, in inducible renal tubule-specific SGK1 knockout mice, NCC expression is down-regulated.Interestingly, in contrast to ENaC, Nedd4-2-mediated NCC inhibition is independent of a PY motif in NCC. Moreover, whereas single mutations of Nedd4-2 S328 or S222 to alanine do not interfere with SGK1 action, the double mutation enhances Nedd4-2 activity and abolishes SGK1-dependent inhibition. These results indicate that NCC expression and activity is controlled by a regulatory pathway involving SGK1 and Nedd4-2, and provides an explanation for the well-known aldosterone-induced increase in NCC protein expression.RésuméLa régulation du transport de sodium est cruciale dans le maintien de la pression artérielle. L'aldostérone stimule la réabsorption de Na+ dans la partie du néphron sensible à l'aldostérone (ASDN), via le co-transporteur Na+-CI" (NCC) au niveau du tubule contourné distale et via le canal à sodium (Epithelial Na+ Channel ; ENaC) dans la deuxième partie du tubule contourné distale, dans le tube connecteur et le tube collecteur. L'aldostérone augmente l'expression de NCC au niveau protéique par un mécanisme non élucidé. La protéine ubiquitine ligase Nedd4-2 est exprimée tout le long du néphron sensible à l'aldostérone. ENaC est connu pour être régulé par Nedd4-2. Suite à une stimulation par l'aldostérone, la kinase Ser/Thr SGK1 phosphoryle Nedd4-2, ce qui empêche l'interaction entre Nedd4-2 et ENaC. Dans des cellules HEK293 transfectées, nous avons montré que Nedd4-2 interagit avec le co-transporteur NCC et stimule l'ubiquitylation de NCC à la surface. Nous avons montré dans les oocytes de Xenopus laevis que l'expression de NCC avec Nedd4-2 diminue l'activité du co-transporteur. Cette diminution n'est pas observée lorsqu'on exprime NCC avec le mutant inactif de Nedd4-2. Cette inhibition de NCC est contrée par SGK1. L'effet de SGK1 sur NCC dépend de son activité kinase. Nous avons montré dans des souris knock-out pour Nedd4-2, dans le néphron et de manière inductible, que l'expression de NCC est augmentée. Nous avons également montré que la suppression de la protéine Nedd4-2 dans les cellules mDCT15 provoque l'augmentation de NCC. Au contraire dans les souris knock-out pour la kinase SGK1, dans le néphron et de manière inductible, nous observons une diminution de la protéine NCC. Contrairement à ce qui a été montré pour le canal ENaC l'inhibition de NCC par Nedd4-2 est indépendante des motifs PY. De plus, La mutation des sérines 328 ou 222 sur Nedd4-2 en alanine n'interfère pas avec l'action de SGK1 pour prévenir l'inhibition. Par contre, la double mutation, les sérines 222 et 328 mutées en alanine, augmente l'action de Nedd4-2 sur l'activité de NCC et prévient l'effet de SGK1. Ces résultats montrent que l'expression et l'activité de NCC sont contrôlées par une voie de régulation impliquant Nedd4-2-SGK1 et nous fournissent une explication pour l'augmentation de NCC observé après une induction avec l'aldostérone.Résumé large publicOn estime que des millions de personnes seraient hypertendues. L'hypertension artérielle est responsable d'environ 8 millions de décès par ans dans le monde. L'hypertension est responsable de la moitié environs des accidents cardiaques, mais aussi des accidents vasculaires cérébraux. Il est très important de comprendre les mécanismes qui se trouvent derrière cette pathologie.Le co-transporteur NCC joue un grand rôle dans le maintien de la balance sodique. Il a été montré que des perturbations dans l'expression de NCC pouvaient engendrer de l'hypertension.Le co-transporteur NCC est exprimé dans la partie distale du néphron, l'unité fonctionnelle du rein. Plusieurs études ont montrées que NCC était sous le contrôle de l'hormone aldostérone.Le travail de cette thèse consiste à étudier les mécanismes impliqués dans la régulation de NCC. On a ainsi pu montrer que NCC interagit avec la protéine ubiquitine ligase Nedd4-2. La protéine Nedd4-2 diminue l'expression de NCC à la surface cellulaire et aussi son activité Nous avons également montré que la kinase SGK1 pouvait prévenir l'interaction entre Nedd4-2 et NCC par phosphorylation de Nedd4-2. Nous avons montré dans des souris deletée pour Nedd4-2, dans le néphron, que l'expression de NCC est augmentée. Nous avons également montré que la suppression de la protéine Nedd4-2 dans les cellules mDCT15 provoque l'augmentation de NCC. Au contraire, dans les souris deletée pour la kinase SGK1, dans le néphron, nous observons une diminution de la protéine NCC. La connaissance des processus impliqués dans la régulation du co-transporteur NCC pourrait amener au développement de nouveau médicaments pour soigner l'hypertension.
Resumo:
The receptor tyrosine kinase (RTK)/phosphoinositide 3-kinase (PI3K) pathway is fundamental for cancer cell proliferation and is known to be frequently altered and activated in neoplasia, including embryonal tumors. Based on the high frequency of alterations, targeting components of the PI3K signaling pathway is considered to be a promising therapeutic approach for cancer treatment. Here, we have investigated the potential of targeting the axis of the insulin-like growth factor-1 receptor (IGF-1R) and PI3K signaling in two common cancers of childhood: neuroblastoma, the most common extracranial tumor in children and medulloblastoma, the most frequent malignant childhood brain tumor. By treating neuroblastoma and medulloblastoma cells with R1507, a specific humanized monoclonal antibody against the IGF-1R, we could observe cell line-specific responses and in some cases a strong decrease in cell proliferation. In contrast, targeting the PI3K p110α with the specific inhibitor PIK75 resulted in broad anti-proliferative effects in a panel of neuro- and medulloblastoma cell lines. Additionally, sensitization to commonly used chemotherapeutic agents occurred in neuroblastoma cells upon treatment with R1507 or PIK75. Furthermore, by studying the expression and phosphorylation state of IGF-1R/PI3K downstream signaling targets we found down-regulated signaling pathway activation. In addition, apoptosis occurred in embryonal tumor cells after treatment with PIK75 or R1507. Together, our studies demonstrate the potential of targeting the IGF-1R/PI3K signaling axis in embryonal tumors. Hopefully, this knowledge will contribute to the development of urgently required new targeted therapies for embryonal tumors.
Resumo:
Adeno-associated virus type 2 (AAV2) infection incites cells to arrest with 4N DNA content or die if the p53 pathway is defective. This arrest depends on AAV2 DNA, which is single stranded with inverted terminal repeats that serve as primers during viral DNA replication. Here, we show that AAV2 DNA triggers damage signaling that resembles the response to an aberrant cellular DNA replication fork. UV treatment of AAV2 enhances the G2 arrest by generating intrastrand DNA cross-links which persist in infected cells, disrupting viral DNA replication and maintaining the viral DNA in the single-stranded form. In cells, such DNA accumulates into nuclear foci with a signaling apparatus that involves DNA polymerase delta, ATR, TopBP1, RPA, and the Rad9/Rad1/Hus1 complex but not ATM or NBS1. Focus formation and damage signaling strictly depend on ATR and Chk1 functions. Activation of the Chk1 effector kinase leads to the virus-induced G2 arrest. AAV2 provides a novel way to study the cellular response to abnormal DNA replication without damaging cellular DNA. By using the AAV2 system, we show that in human cells activation of phosphorylation of Chk1 depends on TopBP1 and that it is a prerequisite for the appearance of DNA damage foci.
Resumo:
Insulin resistance in obesity is partly due to diminished glucose transport in myocytes and adipocytes, but underlying mechanisms are uncertain. Insulin-stimulated glucose transport requires activation of phosphatidylinositol (PI) 3-kinase (3K), operating downstream of insulin receptor substrate-1. PI3K stimulates glucose transport through increases in PI-3,4,5-(PO(4))(3) (PIP(3)), which activates atypical protein kinase C (aPKC) and protein kinase B (PKB/Akt). However, previous studies suggest that activation of aPKC, but not PKB, is impaired in intact muscles and cultured myocytes of obese subjects. Presently, we examined insulin activation of glucose transport and signaling factors in cultured adipocytes derived from preadipocytes harvested during elective liposuction in lean and obese women. Relative to adipocytes of lean women, insulin-stimulated [(3)H]2-deoxyglucose uptake and activation of insulin receptor substrate-1/PI3K and aPKCs, but not PKB, were diminished in adipocytes of obese women. Additionally, the direct activation of aPKCs by PIP(3) in vitro was diminished in aPKCs isolated from adipocytes of obese women. Similar impairment in aPKC activation by PIP(3) was observed in cultured myocytes of obese glucose-intolerant subjects. These findings suggest the presence of defects in PI3K and aPKC activation that persist in cultured cells and limit insulin-stimulated glucose transport in adipocytes and myocytes of obese subjects.
Resumo:
The internalization properties of the alpha1a- and alpha1b-adrenergic receptors (ARs) subtypes transiently expressed in human embryonic kidney (HEK) 293 cells were compared using biotinylation experiments and confocal microscopy. Whereas the alpha1b-AR displayed robust agonist-induced endocytosis, the alpha1a-AR did not. Constitutive internalization of the alpha1a-AR was negligible, whereas the alpha1b-AR displayed significant constitutive internalization and recycling. We investigated the interaction of the alpha1-AR subtypes with beta-arrestins 1 and 2 as well as with the AP50 subunit of the clathrin adaptor complex AP2. The results from both coimmunoprecipitation experiments and beta-arrestin translocation assays indicated that the agonistinduced interaction of the alpha1a-AR with beta-arrestins was much weaker than that of the alpha1b-AR. In addition, the alpha1a-AR did not bind AP50. The alpha1b-AR mutant M8, lacking the main phosphorylation sites in the receptor C tail, was unable to undergo endocytosis and was profoundly impaired in binding beta-arrestins despite its binding to AP50. In contrast, the alpha1b-AR mutant DeltaR8, lacking AP50 binding, bound beta-arrestins efficiently, and displayed delayed endocytosis. RNA interference showed that beta-arrestin 2 plays a prominent role in alpha1b-AR endocytosis. The findings of this study demonstrate differences in internalization between the alpha1a- and alpha1b-AR and provide evidence that the lack of significant endocytosis of the alpha1a-AR is linked to its poor interaction with beta-arrestins as well as with AP50. We also provide evidence that the integrity of the phosphorylation sites in the C tail of the alpha1b-AR is important for receptor/beta-arrestin interaction and that this interaction is the main event triggering receptor internalization.
Resumo:
Summary : A lot of information can be obtained on proteins when proteomics methods are used. In our study, we aimed to characterize complexes containing pro-apoptotic proteins by different proteomics methods and finally focused on PIDD (p53-induced protein with a death domain), for which the most interesting results were obtained. PIDD has been shown to function as a molecular switch between genotoxic stress-induced apoptotis and genotoxic stress-induced cell survival through NF-κB activation. To exert these two functions, PIDD forms alternate complexes respectively with caspase2 and CRADD on one hand and RIP 1 and NEMO on the other hand. The first part of our study focuses on the processing of PIDD. PIDD full length (FL) is constitutively cleaved into three fragments, an N-terminal one (PIDD-N) and two fragments containing the C-terminus (PIDD-C and PIDD-CC). Localization of the two PIDD cleavage sites by mass spectrometry (MS) allowed to understand that PIDD is probably not cleaved by proteases but is subject to protein (self-)splicing and also to map the PIDD-N, PIDD-C and PIDD-CC fragments exactly. Further characterization of these three fragments by Tinel et al. (Tinel et al., 2007) showed that PIDD-C is involved in activation of an apoptotic pathway while PIDD-CC is involved in NF-κB activation. We also found that PIDD is subject to proline-directed phosphorylation at two serine residues in PIDD-N, the regulatory fragment of PIDD. The second part of the study aimed at identifying by proteomics techniques proteins that co-purify with PIDD and therefore are putative cellular interaction partners. In this respect we analyzed samples obtained in different conditions or with different PIDD constructs corresponding to processed fragments. This allowed us to identify a large number of potential interactors for PIDD. For example, by comparing data obtained from PIDD-C and PIDD-FL affinity purifications, we found that the Hsp90 chaperone system interacts strongly with PIDD-N. In the third part of this study, we developed methods to selectively and rapidly quantify by MS proteins of interest in PIDD affinity purifications or negative controls. Using these tools we detected significant changes in PIDD-FL-copurifying proteins treated by heat shock. Overall, our studies provide informative data on the processing of PIDD and its possible involvement in several molecular pathways.
Resumo:
PURPOSE: To evaluate the effect of XG-102 (formerly D-JNKI1), a TAT-coupled dextrogyre peptide that selectively inhibits the c-Jun N-terminal kinase, in the treatment of endotoxin-induced uveitis (EIU). METHODS: EIU was induced in Lewis rats by LPS injection. XG-102 was administered at the time of LPS challenge. The ocular biodistribution of XG-102 was evaluated using immunodetection at 24 hours after either 20 microg/kg IV (IV) or 0.2 microg/injection intravitreous (IVT) administrations in healthy or uveitic eyes. The effect of XG-102 on EIU was evaluated using clinical scoring, infiltration cell quantification, inducible nitric oxide synthase (iNOS) expression and immunohistochemistry, and cytokines and chemokines kinetics at 6, 24, and 48 hours using multiplex analysis on ocular media. Control EIU eyes received vehicle injection IV or IVT. The effect of XG-102 on c-Jun phosphorylation in EIU was evaluated by Western blot in eye tissues. RESULTS: After IVT injection, XG-102 was internalized in epithelial cells from iris/ciliary body and retina and in glial and microglial cells in both healthy and uveitic eyes. After IV injection, XG-102 was concentrated primarily in inflammatory cells of uveitic eyes. Using both routes of administration, XG-102 significantly inhibited clinical signs of EIU, intraocular cell infiltration, and iNOS expression together with reduced phosphorylation of c-Jun. The anti-inflammatory effect of XG-102 was mediated by iNOS, IFN-gamma, IL-2, and IL-13. CONCLUSIONS: This is the first evidence that interfering with the JNK pathway can reduce intraocular inflammation. Local administration of XG-102, a clinically evaluated peptide, may have potential for treating uveitis.
Resumo:
OBJECTIVE: The gluco-incretin hormones glucagon-like peptide (GLP)-1 and gastric inhibitory peptide (GIP) protect beta-cells against cytokine-induced apoptosis. Their action is initiated by binding to specific receptors that activate the cAMP signaling pathway, but the downstream events are not fully elucidated. Here we searched for mechanisms that may underlie this protective effect. RESEARCH DESIGN AND METHODS: We performed comparative transcriptomic analysis of islets from control and GipR(-/-);Glp-1-R(-/-) mice, which have increased sensitivity to cytokine-induced apoptosis. We found that IGF-1 receptor expression was markedly reduced in the mutant islets. Because the IGF-1 receptor signaling pathway is known for its antiapoptotic effect, we explored the relationship between gluco-incretin action, IGF-1 receptor expression and signaling, and apoptosis. RESULTS: We found that GLP-1 robustly stimulated IGF-1 receptor expression and Akt phosphorylation and that increased Akt phosphorylation was dependent on IGF-1 but not insulin receptor expression. We demonstrated that GLP-1-induced Akt phosphorylation required active secretion, indicating the presence of an autocrine activation mechanism; we showed that activation of IGF-1 receptor signaling was dependent on the secretion of IGF-2. We demonstrated, both in MIN6 cell line and primary beta-cells, that reducing IGF-1 receptor or IGF-2 expression or neutralizing secreted IGF-2 suppressed GLP-1-induced protection against apoptosis. CONCLUSIONS: An IGF-2/IGF-1 receptor autocrine loop operates in beta-cells. GLP-1 increases its activity by augmenting IGF-1 receptor expression and by stimulating secretion; this mechanism is required for GLP-1-induced protection against apoptosis. These findings may lead to novel ways of preventing beta-cell loss in the pathogenesis of diabetes.
Resumo:
Pseudohypoaldosteronism type 1 (PHA-1) is an inherited disease characterized by severe neonatal salt-wasting and caused by mutations in subunits of the amiloride-sensitive epithelial sodium channel (ENaC). A missense mutation (G37S) of the human ENaC beta subunit that causes loss of ENaC function and PHA-1 replaces a glycine that is conserved in the N-terminus of all members of the ENaC gene family. We now report an investigation of the mechanism of channel inactivation by this mutation. Homologous mutations, introduced into alpha, beta or gamma subunits, all significantly reduce macroscopic sodium channel currents recorded in Xenopus laevis oocytes. Quantitative determination of the number of channel molecules present at the cell surface showed no significant differences in surface expression of mutant compared with wild-type channels. Single channel conductances and ion selectivities of the mutant channels were identical to that of wild-type. These results suggest that the decrease in macroscopic Na currents is due to a decrease in channel open probability (P(o)), suggesting that mutations of a conserved glycine in the N-terminus of ENaC subunits change ENaC channel gating, which would explain the disease pathophysiology. Single channel recordings of channels containing the mutant alpha subunit (alphaG95S) directly demonstrate a striking reduction in P(o). We propose that this mutation favors a gating mode characterized by short-open and long-closed times. We suggest that determination of the gating mode of ENaC is a key regulator of channel activity.