942 resultados para parasitoid-specific protein


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Feline Immunodeficiency Virus is a worldwide infection and is considered a significant pathogen. The diagnosis of FIV infections is mainly based on commercially available rapid tests that are highly expensive in Brazil, hence it is rarely performed in the country. Furthermore, lentiviruses grow slowly and poorly in tissue cultures, making the production of viral antigen by classic means and thus the establishment of FIV immunodiagnosis impracticable. In order to deal with this, recombinant DNA techniques were adopted to produce the protein p24, a viral capsid antigen. The protein's reactivity evaluation analyzed by Western blot indicated that this recombinant antigen can be a useful tool for the immunodiagnostic of FIV infections.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Scrapie is a transmissible spongiform encephalopathy of sheeps and goats, associated with the deposition of a isoform of the prion protein (PrPsc). This isoform presents an altered conformation that leads to aggregation in the host's central nervous and lymphoreticular systems. Predisposition to the prion agent infection can be influenced by specific genotypes related to mutations in amino acids of the PrPsc gene. The most characterized mutations occur at codons 136, 154 and 171, with genotypes VRQ being the most susceptible and ARR the most resistant. In this study we have analyzed polymorphisms in 15 different codons of the PrPsc gene in sheeps from a Suffolk herd from Brazil affected by an outbreak of classical scrapie. Amplicons from the PrPsc gene, encompassing the most relevant altered codons in the protein, were sequenced in order to determine each animal's genotype. We have found polymorphisms at 3 of the 15 analyzed codons (136, 143 and 171). The most variable codon was 171, where all described alleles were identified. A rare polymorphism was found at the 143 codon in 4% of the samples analyzed, which has been described as increasing scrapie resistance in otherwise susceptible animals. No other polymorphisms were detected in the remaining 12 analyzed codons, all of them corresponding to the wild-type prion protein. Regarding the risk degree of developing scrapie, most of the animals (96%) had genotypes corresponding to risk groups 1 to 3 (very low to moderate), with only 4% in the higher risks group. Our data is discussed in relation to preventive measures involving genotyping and positive selection to control the disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present review describes recent research on the regulation by glutamate and Ca2+ of the phosphorylation state of the intermediate filament protein of the astrocytic cytoskeleton, glial fibrillary acidic protein (GFAP), in immature hippocampal slices. The results of this research are discussed against a background of modern knowledge of the functional importance of astrocytes in the brain and of the structure and dynamic properties of intermediate filament proteins. Astrocytes are now recognized as partners with neurons in many aspects of brain function with important roles in neural plasticity. Site-specific phosphorylation of intermediate filament proteins, including GFAP, has been shown to regulate the dynamic equilibrium between the polymerized and depolymerized state of the filaments and to play a fundamental role in mitosis. Glutamate was found to increase the phosphorylation state of GFAP in hippocampal slices from rats in the post-natal age range of 12-16 days in a reaction that was dependent on external Ca2+. The lack of external Ca2+ in the absence of glutamate also increased GFAP phosphorylation to the same extent. These effects of glutamate and Ca2+ were absent in adult hippocampal slices, where the phosphorylation of GFAP was completely Ca2+-dependent. Studies using specific agonists of glutamate receptors showed that the glutamate response was mediated by a G protein-linked group II metabotropic glutamate receptor (mGluR). Since group II mGluRs do not act by liberating Ca2+ from internal stores, it is proposed that activation of the receptor by glutamate inhibits Ca2+ entry into the astrocytes and consequently down-regulates a Ca2+-dependent dephosphorylation cascade regulating the phosphorylation state of GFAP. The functional significance of these results may be related to the narrow developmental window when the glutamate response is present. In the rat brain this window corresponds to the period of massive synaptogenesis during which astrocytes are known to proliferate. Possibly, glutamate liberated from developing synapses during this period may signal an increase in the phosphorylation

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent reports showing a decrease in sperm count in men have brought new concerns about male infertility. Animal models have been widely used to provide some relevant information about the human male gamete, and extrapolations are made to men and to the clinical context. The present study assesses one of the methods used for separation of germ cells of the adult rat testis, namely centrifugal elutriation followed by density gradients (Percoll®). This method was chosen since it presents the best results for cell purity in separating germ cells from the rat testis. A comparison between continuous and discontinuous Percoll® gradients was performed in order to identify the best type of gradient to separate the cells. Maximal cell purity was obtained for spermatocytes (81 ± 8.2%, mean ± SEM) and spermatids (84 ± 2.6%) using centrifugal elutriation followed by continuous Percoll® gradients. A significant difference in purity was observed between elongating spermatids harvested from continuous Percoll® gradients and from discontinuous gradients. Molecular analysis was used to assess cell contamination by employing specific probes, namely transition protein 2 (TP2), mitochondrial cytochrome C oxidase II (COX II), and sulfated glycoprotein 1 (SGP1). Molecular analysis of the samples demonstrated that morphological criteria are efficient in characterizing the main composition of the cell suspension, but are not reliable for identifying minimal contamination from other cells. Reliable cell purity data should be established using molecular analysis

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Training in step-down inhibitory avoidance (0.3-mA footshock) is followed by biochemical changes in rat hippocampus that strongly suggest an involvement of quantitative changes in glutamate AMPA receptors, followed by changes in the dopamine D1 receptor/cAMP/protein kinase A (PKA)/CREB-P signalling pathway in memory consolidation. AMPA binding to its receptor and levels of the AMPA receptor-specific subunit GluR1 increase in the hippocampus within the first 3 h after training (20-70%). Binding of the specific D1 receptor ligand, SCH23390, and cAMP levels increase within 3 or 6 h after training (30-100%). PKA activity and CREB-P levels show two peaks: a 35-40% increase 0 h after training, and a second increase 3-6 h later (35-60%). The results correlate with pharmacological findings showing an early post-training involvement of AMPA receptors, and a late involvement of the D1/cAMP/PKA/CREB-P pathway in memory consolidation of this task

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Insulin stimulates the tyrosine kinase activity of its receptor, resulting in the phosphorylation of its cytosolic substrate, insulin receptor substrate 1 (IRS-1). IRS-1 is also a substrate for different peptides and growth factors, and a transgenic mouse "knockout" for this protein does not have normal growth. However, the role of IRS-1 in kidney hypertrophy and/or hyperplasia was not investigated. In the present study we investigated IRS-1 protein and tyrosine phosphorylation levels in the remnant kidney after unilateral nephrectomy (UNX) in 6-week-old male Wistar rats. After insulin stimulation the levels of insulin receptor and IRS-1 tyrosine phosphorylation were reduced to 79 ± 5% (P<0.005) and 58 ± 6% (P<0.0001), respectively, of the control (C) levels, in the remnant kidney. It is possible that a circulating factor and/or a local (paracrine) factor playing a role in kidney growth can influence the early steps of insulin action in parallel. To investigate the hypothesis of a circulating factor, we studied the early steps of insulin action in liver and muscle of unilateral nephrectomized rats. There was no change in pp185 tyrosine phosphorylation levels in liver (C 100 ± 12% vs UNX 89 ± 9%, NS) and muscle (C 100 ± 22% vs UNX 91 ± 17%, NS), and also there was no change in IRS-1 phosphorylation levels in both tissues. These data demonstrate that after unilateral nephrectomy there is a decrease in insulin-induced insulin receptor and IRS-1 tyrosine phosphorylation levels in kidney but not in liver and muscle. It will be of interest to investigate which factors, probably paracrine ones, regulate these early steps of insulin action in the contralateral kidney of unilaterally nephrectomized rats.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This investigation examined how the nutritional status of rats fed a low-protein diet was affected when the animals were treated with the ß-2 selective agonist clenbuterol (CL). Males (4 weeks old) from an inbred, specific-pathogen-free strain of hooded rats maintained at the Dunn Nutritional Laboratory were used in the experiments (N = 6 rats per group). CL treatment (Ventipulmin, Boehringer-Ingelheim Ltd., 3.2 mg/kg diet for 2 weeks) caused an exacerbation of the symptoms associated with protein deficiency in rats. Plasma albumin concentrations, already low in rats fed a low-protein diet (group A), were further reduced in CL rats (A = 25.05 ± 0.31 vs CL = 23.64 ± 0.30 g/l, P<0.05). Total liver protein decreased below the level seen in either pair-fed animals (group P) or animals with free access to the low-protein diet (A = 736.56 ± 26 vs CL = 535.41 ± 54 mg, P<0.05), whereas gastrocnemius muscle protein was higher than the values normally described for control (C) animals (C = 210.88 ± 3.2 vs CL = 227.14 ± 1.7 mg/g, P<0.05). Clenbuterol-treated rats also showed a reduction in growth when compared to P rats (P = 3.2 ± 1.1 vs CL = -10.2 ± 1.9 g, P<0.05). This was associated with a marked decrease in fat stores (P = 5.35 ± 0.81 vs CL = 2.02 ± 0.16 g, P<0.05). Brown adipose tissue (BAT) cytochrome oxidase activity, although slightly lower than in P rats (P = 469.96 ± 16.20 vs CL = 414.48 ± 11.32 U/BAT x kg body weight, P<0.05), was still much higher than in control rats (C = 159.55 ± 11.54 vs CL = 414.48 ± 11.32 U/BAT x kg body weight, P<0.05). The present findings support the hypothesis that an increased muscle protein content due to clenbuterol stimulation worsened amino acid availability to the liver and further reduced albumin synthesis causing exacerbation of hypoalbuminemia in rats fed a low-protein diet.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Alpha-Hemolysin is synthesized as a 1024-amino acid polypeptide, then intracellularly activated by specific fatty acylation. A second activation step takes place in the extracellular medium through binding of Ca2+ ions. Even in the absence of fatty acids and Ca2+ HlyA is an amphipathic protein, with a tendency to self-aggregation. However, Ca2+-binding appears to expose hydrophobic patches on the protein surface, facilitating both self-aggregation and irreversible insertion into membranes. The protein may somehow bind membranes in the absence of divalent cations, but only when Ca2+ (or Sr2+, or Ba2+) is bound to the toxin in aqueous suspensions, i.e., prior to its interaction with bilayers, can a-hemolysin bind irreversibly model or cell membranes in such a way that the integrity of the membrane barrier is lost, and cell or vesicle leakage ensues. Leakage is not due to the formation of proteinaceous pores, but rather to the transient disruption of the bilayer, due to the protein insertion into the outer membrane monolayer, and subsequent perturbations in the bilayer lateral tension. Protein or glycoprotein receptors for a-hemolysin may exist on the cell surface, but the toxin is also active on pure lipid bilayers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

NifA protein activates transcription of nitrogen fixation operons by the alternative sigma54 holoenzyme form of RNA polymerase. This protein binds to a well-defined upstream activator sequence (UAS) located at the -200/-100 position of nif promoters with the consensus motif TGT-N10-ACA. NifA of Azospirillum brasilense was purified in the form of a glutathione-S-transferase (GST)-NifA fusion protein and proteolytic release of GST yielded inactive and partially soluble NifA. However, the purified NifA was able to induce the production of specific anti-A. brasilense NifA-antiserum that recognized NifA from A. brasilense but not from K. pneumoniae. Both GST-NifA and NifA expressed from the E. coli tac promoter are able to activate transcription from the nifHDK promoter but only in an A. brasilense background. In order to investigate the mechanism that regulates NifA binding capacity we have used E. coli total protein extracts expressing A. brasilense nifA in mobility shift assays. DNA fragments carrying the two overlapping, wild-type or mutated UAS motifs present in the nifH promoter region revealed a retarded band of related size. These data show that the binding activity present in the C-terminal domain of A. brasilense NifA protein is still functional even in the presence of oxygen.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

G protein-coupled receptor (GPCR) activation is followed rapidly by adaptive changes that serve to diminish the responsiveness of a cell to further stimulation. This process, termed desensitization, is the consequence of receptor phosphorylation, arrestin binding, sequestration and down-regulation. GPCR phosphorylation is initiated within seconds to minutes of receptor activation and is mediated by both second messenger-dependent protein kinases and receptor-specific G protein-coupled receptor kinases (GRKs). Desensitization in response to GRK-mediated phosphorylation involves the binding of arrestin proteins that serve to sterically uncouple the receptor from its G protein. GPCR sequestration, the endocytosis of receptors to endosomes, not only contributes to the temporal desensitization of GPCRs, but plays a critical role in GPCR resensitization. GPCR down-regulation, a loss of the total cellular complement of receptors, is the consequence of both increased lysosomal degradation and decreased mRNA synthesis of GPCRs. While each of these agonist-mediated desensitization processes are initiated within a temporally dissociable time frame, recent data suggest that they are intimately related to one another. The use of green fluorescent protein from the jellyfish Aqueora victoria as an epitope tag with intrinsic fluorescence has facilitated our understanding of the relative relationship between GRK phosphorylation, arrestin binding, receptor sequestration and down-regulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Activation of Th1 or Th2 cells is associated with production of specific immunoglobulin isotypes, offering the opportunity to use antibody measurement for evaluation of T cell function. Schistosomiasis and visceral leishmaniasis are diseases associated with Th2 activation. However, an IgE response is not always detected in these patients. In the present study we evaluated specific IgE antibodies to S. mansoni and L. chagasi antigens by ELISA after depletion of serum IgG with protein G immobilized on Sepharose beads or RF-absorbent (purified sheep IgG antibodies anti-human IgG). In schistosomiasis patients, specific IgE to SWAP antigen was demonstrable in only 10 of 21 patients (48%) (mean absorbance ± SD = 0.102 ± 0.195) when unabsorbed serum was used. Depletion of IgG with protein G increased the number of specific IgE-positive tests to 13 (62%) and the use of RF-absorbent increased the number of positive results to 20 (95%) (mean absorbances ± SD = 0.303 ± 0.455 and 0.374 ± 0.477, respectively). Specific IgE anti-L. chagasi antibodies were not detected in unabsorbed serum from visceral leishmaniasis patients. When IgG was depleted with protein G, IgE antibodies were detected in only 3 (11%) of 27 patients, and the use of RF-absorbent permitted the detection of this isotype in all 27 visceral leishmaniasis sera tested (mean absorbance ± SD = 0.104 ± 0.03). These data show that the presence of IgG antibodies may prevent the detection of a specific IgE response in these parasite diseases. RF-absorbent, a reagent that blocks IgG-binding sites and also removes rheumatoid factor, was more efficient than protein G for the demonstration of specific IgE antibodies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Measuring protein biomarkers from sample matrix, such as plasma, is one of the basic tasks in clinical diagnostics. Bioanalytical assays used for the measuring should be able to measure proteins with high sensitivity and specificity. Furthermore, multiplexing capability would also be advantageous. To ensure the utility of the diagnostic test in point-of-care setting, additional requirements such as short turn-around times, ease-ofuse and low costs need to be met. On the other hand, enhancement of assay sensitivity could enable exploiting novel biomarkers, which are present in very low concentrations and which the current immunoassays are unable to measure. Furthermore, highly sensitive assays could enable the use of minimally invasive sampling. In the development of high-sensitivity assays the label technology and affinity binders are in pivotal role. Additionally, innovative assay designs contribute to the obtained sensitivity and other characteristics of the assay as well as its applicability. The aim of this thesis was to study the impact of assay components on the performance of both homogeneous and heterogeneous assays. Applicability of two different lanthanide-based label technologies, upconverting nanoparticles and switchable lanthanide luminescence, to protein detection was explored. Moreover, the potential of recombinant antibodies and aptamers as alternative affinity binders were evaluated. Additionally, alternative conjugation chemistries for production of the labeled binders were studied. Different assay concepts were also evaluated with respect to their applicability to point-of-care testing, which requires simple yet sensitive methods. The applicability of upconverting nanoparticles to the simultaneous quantitative measurement of multiple analytes using imaging-based detection was demonstrated. Additionally, the required instrumentation was relatively simple and inexpensive compared to other luminescent lanthanide-based labels requiring time-resolved measurement. The developed homogeneous assays exploiting switchable lanthanide luminescence were rapid and simple to perform and thus applicable even to point-ofcare testing. The sensitivities of the homogeneous assays were in the picomolar range, which are still inadequate for some analytes, such as cardiac troponins, requiring ultralow limits of detection. For most analytes, however, the obtained limits of detection were sufficient. The use of recombinant antibody fragments and aptamers as binders allowed site-specific and controlled covalent conjugation to construct labeled binders reproducibly either by using chemical modification or recombinant technology. Luminescent lanthanide labels were shown to be widely applicable for protein detection in various assay setups and to contribute assay sensitivity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have studied the effect of peroxynitrite (ONOO-) on the membrane cytoskeleton of red blood cells and its protection by melatonin. Analysis of the protein fraction of the preparation by SDS-PAGE revealed a dose-dependent (0-600 µM ONOO-) disappearance at pH 7.4 of the main proteins: spectrin, band 3, and actin, with the concomitant formation of high-molecular weight aggregates resistant to reduction by ß-mercaptoethanol (2%) at room temperature for 20 min. These aggregates were not solubilized by 8 M urea. Incubation of the membrane cytoskeleton with ONOO- was characterized by a marked depletion of free sulfhydryl groups (50% at 250 µM ONOO-). However, a lack of effect of ß-mercaptoethanol suggests that, under our conditions, aggregate formation is not mediated only by sulfhydryl oxidation. The lack of a protective effect of the metal chelator diethylenetriaminepentaacetic acid confirmed that ONOO--induced oxidative damage does not occur only by a transition metal-dependent mechanism. However, we demonstrated a strong protection against cytoskeletal alterations by desferrioxamine, which has been described as a direct scavenger of the protonated form of peroxynitrite. Desferrioxamine (0.5 mM) also inhibited the loss of tryptophan fluorescence observed when the ghosts were treated with ONOO-. Glutathione, cysteine, and Trolox® (1 mM), but not mannitol (100 mM), were able to protect the proteins against the effect of ONOO- in a dose-dependent manner. Melatonin (0-1 mM) was especially efficient in reducing the loss of spectrin proteins when treated with ONOO- (90% at 500 µM melatonin). Our findings show that the cytoskeleton, and in particular spectrin, is a sensitive target for ONOO-. Specific antioxidants can protect against such alterations, which could seriously impair cell dynamics and generate morphological changes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present paper describes important features of the immune response induced by the Cry1Ac protein from Bacillus thuringiensis in mice. The kinetics of induction of serum and mucosal antibodies showed an immediate production of anti-Cry1Ac IgM and IgG antibodies in serum after the first immunization with the protoxin by either the intraperitoneal or intragastric route. The antibody fraction in serum and intestinal fluids consisted mainly of IgG1. In addition, plasma cells producing anti-Cry1Ac IgG antibodies in Peyer's patches were observed using the solid-phase enzyme-linked immunospot (ELISPOT). Cry1Ac toxin administration induced a strong immune response in serum but in the small intestinal fluids only anti-Cry1Ac IgA antibodies were detected. The data obtained in the present study confirm that the Cry1Ac protoxin is a potent immunogen able to induce a specific immune response in the mucosal tissue, which has not been observed in response to most other proteins.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cyanide-resistant alternative oxidase (AOX) is not limited to plant mitochondria and is widespread among several types of protists. The uncoupling protein (UCP) is much more widespread than previously believed, not only in tissues of higher animals but also in plants and in an amoeboid protozoan. The redox energy-dissipating pathway (AOX) and the proton electrochemical gradient energy-dissipating pathway (UCP) lead to the same final effect, i.e., a decrease in ATP synthesis and an increase in heat production. Studies with green tomato fruit mitochondria show that both proteins are present simultaneously in the membrane. This raises the question of a specific physiological role for each energy-dissipating system and of a possible functional connection between them (shared regulation). Linoleic acid, an abundant free fatty acid in plants which activates UCP, strongly inhibits cyanide-resistant respiration mediated by AOX. Moreover, studies of the evolution of AOX and UCP protein expression and of their activities during post-harvest ripening of tomato fruit show that AOX and plant UCP work sequentially: AOX activity decreases in early post-growing stages and UCP activity is decreased in late ripening stages. Electron partitioning between the alternative oxidase and the cytochrome pathway as well as H+ gradient partitioning between ATP synthase and UCP can be evaluated by the ADP/O method. This method facilitates description of the kinetics of energy-dissipating pathways and of ATP synthase when state 3 respiration is decreased by limitation of oxidizable substrate.