937 resultados para optimal power flow successive linear programming
Resumo:
In this work, we analyze the effect of demand uncertainty on the multi-objective optimization of chemical supply chains (SC) considering simultaneously their economic and environmental performance. To this end, we present a stochastic multi-scenario mixed-integer linear program (MILP) with the unique feature of incorporating explicitly the demand uncertainty using scenarios with given probability of occurrence. The environmental performance is quantified following life cycle assessment (LCA) principles, which are represented in the model formulation through standard algebraic equations. The capabilities of our approach are illustrated through a case study. We show that the stochastic solution improves the economic performance of the SC in comparison with the deterministic one at any level of the environmental impact.
Resumo:
Poster presented in the 24th European Symposium on Computer Aided Process Engineering (ESCAPE 24), Budapest, Hungary, June 15-18, 2014.
Resumo:
In this work, we analyze the effect of incorporating life cycle inventory (LCI) uncertainty on the multi-objective optimization of chemical supply chains (SC) considering simultaneously their economic and environmental performance. To this end, we present a stochastic multi-scenario mixed-integer linear programming (MILP) coupled with a two-step transformation scenario generation algorithm with the unique feature of providing scenarios where the LCI random variables are correlated and each one of them has the desired lognormal marginal distribution. The environmental performance is quantified following life cycle assessment (LCA) principles, which are represented in the model formulation through standard algebraic equations. The capabilities of our approach are illustrated through a case study of a petrochemical supply chain. We show that the stochastic solution improves the economic performance of the SC in comparison with the deterministic one at any level of the environmental impact, and moreover the correlation among environmental burdens provides more realistic scenarios for the decision making process.
Resumo:
Multiobjective Generalized Disjunctive Programming (MO-GDP) optimization has been used for the synthesis of an important industrial process, isobutane alkylation. The two objective functions to be simultaneously optimized are the environmental impact, determined by means of LCA (Life Cycle Assessment), and the economic potential of the process. The main reason for including the minimization of the environmental impact in the optimization process is the widespread environmental concern by the general public. For the resolution of the problem we employed a hybrid simulation- optimization methodology, i.e., the superstructure of the process was developed directly in a chemical process simulator connected to a state of the art optimizer. The model was formulated as a GDP and solved using a logic algorithm that avoids the reformulation as MINLP -Mixed Integer Non Linear Programming-. Our research gave us Pareto curves compounded by three different configurations where the LCA has been assessed by two different parameters: global warming potential and ecoindicator-99.
Resumo:
The electric vehicle (EV) market has seen a rapid growth in the recent past. With an increase in the number of electric vehicles on road, there is an increase in the number of high capacity battery banks interfacing the grid. The battery bank of an EV, besides being the fuel tank, is also a huge energy storage unit. Presently, it is used only when the vehicle is being driven and remains idle for rest of the time, rendering it underutilized. Whereas on the other hand, there is a need of large energy storage units in the grid to filter out the fluctuations of supply and demand during a day. EVs can help bridge this gap. The EV battery bank can be used to store the excess energy from the grid to vehicle (G2V) or supply stored energy from the vehicle to grid (V2G ), when required. To let power flow happen, in both directions, a bidirectional AC-DC converter is required. This thesis concentrates on the bidirectional AC-DC converters which have a control on power flow in all four quadrants for the application of EV battery interfacing with the grid. This thesis presents a bidirectional interleaved full bridge converter topology. This helps in increasing the power processing and current handling capability of the converter which makes it suitable for the purpose of EVs. Further, the benefit of using the interleaved topology is that it increases the power density of the converter. This ensures optimization of space usage with the same power handling capacity. The proposed interleaved converter consists of two full bridges. The corresponding gate pulses of each switch, in one cell, are phase shifted by 180 degrees from those of the other cell. The proposed converter control is based on the one-cycle controller. To meet the challenge of new requirements of reactive power handling capabilities for grid connected converters, posed by the utilities, the controller is modified to make it suitable to process the reactive power. A fictitious current derived from the grid voltage is introduced in the controller, which controls the converter performance. The current references are generated using the second order generalized integrators (SOGI) and phase locked loop (PLL). A digital implementation of the proposed control ii scheme is developed and implemented using DSP hardware. The simulated and experimental results, based on the converter topology and control technique discussed here, are presented to show the performance of the proposed theory.
Resumo:
Issued also as thesis, University of Illinois.
Resumo:
Photocopy. [Washington?] Clearinghouse for Federal Scientific and Technical Information of the U. S. Dept. of Commerce [1966?]
Resumo:
In a deregulated electricity market, optimizing dispatch capacity and transmission capacity are among the core concerns of market operators. Many market operators have capitalized on linear programming (LP) based methods to perform market dispatch operation in order to explore the computational efficiency of LP. In this paper, the search capability of genetic algorithms (GAs) is utilized to solve the market dispatch problem. The GA model is able to solve pool based capacity dispatch, while optimizing the interconnector transmission capacity. Case studies and corresponding analyses are performed to demonstrate the efficiency of the GA model.
Resumo:
It has been established that large numbers of certain trees can survive in the beds of rivers of northeastern Australia where a strongly seasonal distribution of precipitation causes extreme variations in flow on both a yearly and longer-term basis. In these rivers, minimal flow occurs throughout much of any year and for periods of up to several years, allowing the trees to become established and to adapt their form in order to facilitate their survival in environments that experience periodic inundation by fast-flowing, debris-laden water. Such trees (notably paperbark trees of the angiosperm genus Melaleuca) adopt a reclined to prostrate, downstream-trailing habit, have a multiple-stemmed form, modified crown with weeping foliage, development of thick, spongy bark, anchoring of roots into firm to lithified substrates beneath the channel floor, root regeneration, and develop in flow-parallel, linear groves. Individuals from within flow-parallel, linear groves are preserved in situ within the alluvial deposit of the river following burial and death. Four examples of in situ tree fossils within alluvial channel deposits in the Permian of eastern Australia demonstrate that specialised riverbed plant communities also existed at times in the geological past. These examples, from the Lower Permian Carmila Beds, Upper Permian Moranbah Coal Measures and Baralaba Coal Measures of central Queensland and the Upper Permian Newcastle Coal Measures of central New South Wales, show several of the characteristics of trees described from modern rivers in northeastern Australia, including preservation in closely-spaced groups. These properties, together with independent sedimentological evidence, suggest that the Permian trees were adapted to an environment affected by highly variable runoff, albeit in a more temperate climatic situation than the modem Australian examples. It is proposed that occurrences of fossil trees preserved in situ within alluvial channel deposits may be diagnostic of environments controlled by seasonal and longer-term variability in fluvial runoff, and hence may have value in interpreting aspects of palaeoclimate from ancient alluvial successions. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Physical distribution plays an imporant role in contemporary logistics management. Both satisfaction level of of customer and competitiveness of company can be enhanced if the distribution problem is solved optimally. The multi-depot vehicle routing problem (MDVRP) belongs to a practical logistics distribution problem, which consists of three critical issues: customer assignment, customer routing, and vehicle sequencing. According to the literatures, the solution approaches for the MDVRP are not satisfactory because some unrealistic assumptions were made on the first sub-problem of the MDVRP, ot the customer assignment problem. To refine the approaches, the focus of this paper is confined to this problem only. This paper formulates the customer assignment problem as a minimax-type integer linear programming model with the objective of minimizing the cycle time of the depots where setup times are explicitly considered. Since the model is proven to be MP-complete, a genetic algorithm is developed for solving the problem. The efficiency and effectiveness of the genetic algorithm are illustrated by a numerical example.
Resumo:
Over 60% of the recurrent budget of the Ministry of Health (MoH) in Angola is spent on the operations of the fixed health care facilities (health centres plus hospitals). However, to date, no study has been attempted to investigate how efficiently those resources are used to produce health services. Therefore the objectives of this study were to assess the technical efficiency of public municipal hospitals in Angola; assess changes in productivity over time with a view to analyzing changes in efficiency and technology; and demonstrate how the results can be used in the pursuit of the public health objective of promoting efficiency in the use of health resources. The analysis was based on a 3-year panel data from all the 28 public municipal hospitals in Angola. Data Envelopment Analysis (DEA), a non-parametric linear programming approach, was employed to assess the technical and scale efficiency and productivity change over time using Malmquist index.The results show that on average, productivity of municipal hospitals in Angola increased by 4.5% over the period 2000-2002; that growth was due to improvements in efficiency rather than innovation. © 2008 Springer Science+Business Media, LLC.
Resumo:
This paper contributes to extend the minimax disparity to determine the ordered weighted averaging (OWA) model based on linear programming. It introduces the minimax disparity approach between any distinct pairs of the weights and uses the duality of linear programming to prove the feasibility of the extended OWA operator weights model. The paper finishes with an open problem. © 2006 Elsevier Ltd. All rights reserved.
Resumo:
In May 2006, the Ministers of Health of all the countries on the African continent, at a special session of the African Union, undertook to institutionalise efficiency monitoring within their respective national health information management systems. The specific objectives of this study were: (i) to assess the technical efficiency of National Health Systems (NHSs) of African countries for measuring male and female life expectancies, and (ii) to assess changes in health productivity over time with a view to analysing changes in efficiency and changes in technology. The analysis was based on a five-year panel data (1999-2003) from all the 53 countries of continental Africa. Data Envelopment Analysis (DEA) - a non-parametric linear programming approach - was employed to assess the technical efficiency. Malmquist Total Factor Productivity (MTFP) was used to analyse efficiency and productivity change over time among the 53 countries' national health systems. The data consisted of two outputs (male and female life expectancies) and two inputs (per capital total health expenditure and adult literacy). The DEA revealed that 49 (92.5%) countries' NHSs were run inefficiently in 1999 and 2000; 50 (94.3%), 48 (90.6%) and 47 (88.7%) operated inefficiently in 2001, 2002, and 2003 respectively. All the 53 countries' national health systems registered improvements in total factor productivity attributable mainly to technical progress. Fifty-two countries did not experience any change in scale efficiency, while thirty (56.6%) countries' national health systems had a Pure Efficiency Change (PEFFCH) index of less than one, signifying that those countries' NHSs pure efficiency contributed negatively to productivity change. All the 53 countries' national health systems registered improvements in total factor productivity, attributable mainly to technical progress. Over half of the countries' national health systems had a pure efficiency index of less than one, signifying that those countries' NHSs pure efficiency contributed negatively to productivity change. African countries may need to critically evaluate the utility of institutionalising Malmquist TFP type of analyses to monitor changes in health systems economic efficiency and productivity over time. African national health systems, per capita total health expenditure, technical efficiency, scale efficiency, Malmquist indices of productivity change, DEA
Resumo:
This paper introduces a compact form for the maximum value of the non-Archimedean in Data Envelopment Analysis (DEA) models applied for the technology selection, without the need to solve a linear programming (LP). Using this method the computational performance the common weight multi-criteria decision-making (MCDM) DEA model proposed by Karsak and Ahiska (International Journal of Production Research, 2005, 43(8), 1537-1554) is improved. This improvement is significant when computational issues and complexity analysis are a concern.
Resumo:
In the last two decades there have been substantial developments in the mathematical theory of inverse optimization problems, and their applications have expanded greatly. In parallel, time series analysis and forecasting have become increasingly important in various fields of research such as data mining, economics, business, engineering, medicine, politics, and many others. Despite the large uses of linear programming in forecasting models there is no a single application of inverse optimization reported in the forecasting literature when the time series data is available. Thus the goal of this paper is to introduce inverse optimization into forecasting field, and to provide a streamlined approach to time series analysis and forecasting using inverse linear programming. An application has been used to demonstrate the use of inverse forecasting developed in this study. © 2007 Elsevier Ltd. All rights reserved.