963 resultados para numerical integration methods
Resumo:
Numerical modelling has been used to examine the relationship between the results of two commonly used methods of assessing the propensity of coal to spontaneous combustion, the R70 and Relative Ignition Temperature tests, and the likely behaviour in situ. The criticality of various parameters has been examined and a method of utilising critical self-heating parameters has been developed. This study shows that on their own, the laboratory test results do not provide a reliable guide to in situ behaviour but can be used in combination to considerably increase the ability to predict spontaneous combustion behaviour.
Resumo:
Biologists are increasingly conscious of the critical role that noise plays in cellular functions such as genetic regulation, often in connection with fluctuations in small numbers of key regulatory molecules. This has inspired the development of models that capture this fundamentally discrete and stochastic nature of cellular biology - most notably the Gillespie stochastic simulation algorithm (SSA). The SSA simulates a temporally homogeneous, discrete-state, continuous-time Markov process, and of course the corresponding probabilities and numbers of each molecular species must all remain positive. While accurately serving this purpose, the SSA can be computationally inefficient due to very small time stepping so faster approximations such as the Poisson and Binomial τ-leap methods have been suggested. This work places these leap methods in the context of numerical methods for the solution of stochastic differential equations (SDEs) driven by Poisson noise. This allows analogues of Euler-Maruyuma, Milstein and even higher order methods to be developed through the Itô-Taylor expansions as well as similar derivative-free Runge-Kutta approaches. Numerical results demonstrate that these novel methods compare favourably with existing techniques for simulating biochemical reactions by more accurately capturing crucial properties such as the mean and variance than existing methods.
Resumo:
Computational Methods for Coupled Problems in Science and Engineering
Resumo:
This thesis concerns mixed flows (which are characterized by the simultaneous occurrence of free-surface and pressurized flow in sewers, tunnels, culverts or under bridges), and contributes to the improvement of the existing numerical tools for modelling these phenomena. The classic Preissmann slot approach is selected due to its simplicity and capability of predicting results comparable to those of a more recent and complex two-equation model, as shown here with reference to a laboratory test case. In order to enhance the computational efficiency, a local time stepping strategy is implemented in a shock-capturing Godunov-type finite volume numerical scheme for the integration of the de Saint-Venant equations. The results of different numerical tests show that local time stepping reduces run time significantly (between −29% and −85% CPU time for the test cases considered) compared to the conventional global time stepping, especially when only a small region of the flow field is surcharged, while solution accuracy and mass conservation are not impaired. The second part of this thesis is devoted to the modelling of the hydraulic effects of potentially pressurized structures, such as bridges and culverts, inserted in open channel domains. To this aim, a two-dimensional mixed flow model is developed first. The classic conservative formulation of the 2D shallow water equations for free-surface flow is adapted by assuming that two fictitious vertical slots, normally intersecting, are added on the ceiling of each integration element. Numerical results show that this schematization is suitable for the prediction of 2D flooding phenomena in which the pressurization of crossing structures can be expected. Given that the Preissmann model does not allow for the possibility of bridge overtopping, a one-dimensional model is also presented in this thesis to handle this particular condition. The flows below and above the deck are considered as parallel, and linked to the upstream and downstream reaches of the channel by introducing suitable internal boundary conditions. The comparison with experimental data and with the results of HEC-RAS simulations shows that the proposed model can be a useful and effective tool for predicting overtopping and backwater effects induced by the presence of bridges and culverts.
Resumo:
Aquifers are a vital water resource whose quality characteristics must be safeguarded or, if damaged, restored. The extent and complexity of aquifer contamination is related to characteristics of the porous medium, the influence of boundary conditions, and the biological, chemical and physical processes. After the nineties, the efforts of the scientists have been increased exponentially in order to find an efficient way for estimating the hydraulic parameters of the aquifers, and thus, recover the contaminant source position and its release history. To simplify and understand the influence of these various factors on aquifer phenomena, it is common for researchers to use numerical and controlled experiments. This work presents some of these methods, applying and comparing them on data collected during laboratory, field and numerical tests. The work is structured in four parts which present the results and the conclusions of the specific objectives.
Resumo:
The aim of this letter is to demonstrate that complete removal of spectral aliasing occurring due to finite numerical bandwidth used in the split-step Fourier simulations of nonlinear interactions of optical waves can be achieved by enlarging each dimension of the spectral domain by a factor (n+1)/2, where n is the number of interacting waves. Alternatively, when using low-pass filtering for dealiasing this amounts to the need for filtering a 2/(n+1) fraction of each spectral dimension.
Resumo:
The effect of having a fixed differential group delay term in the coarse step method results in a periodic pattern in the inserting a varying DGD term at each integration step, according to a Gaussian distribution. Simulation results are given to illustrate the phenomenon and provide some evidence about its statistical nature.
Resumo:
Queueing theory is an effective tool in the analysis of canputer camrunication systems. Many results in queueing analysis have teen derived in the form of Laplace and z-transform expressions. Accurate inversion of these transforms is very important in the study of computer systems, but the inversion is very often difficult. In this thesis, methods for solving some of these queueing problems, by use of digital signal processing techniques, are presented. The z-transform of the queue length distribution for the Mj GY jl system is derived. Two numerical methods for the inversion of the transfom, together with the standard numerical technique for solving transforms with multiple queue-state dependence, are presented. Bilinear and Poisson transform sequences are presented as useful ways of representing continuous-time functions in numerical computations.
Resumo:
This thesis presents a theoretical investigation of the application of advanced modelling formats in high-speed fibre lightwave systems. The first part of this work focuses on numerical optimisation of dense wavelength division multiplexing (DWDM) system design. We employ advanced spectral domain filtering techniques and carrier pulse reshaping. We then apply these optimisation methods to investigate spectral and temporal domain characteristics of advanced modulation formats in fibre optic telecommunication systems. Next we investigate numerical methods used in detecting and measuring the system performance of advanced modulation formats. We then numerically study the combination of return-to-zero differential phase-shift keying (RZ-DPSK) with advanced photonic devices. Finally we analyse the dispersion management of Nx40 Gbit/s RZ-DPSK transmission applied to a commercial terrestrial lightwave system.
Resumo:
In this thesis various mathematical methods of studying the transient and dynamic stabiIity of practical power systems are presented. Certain long established methods are reviewed and refinements of some proposed. New methods are presented which remove some of the difficulties encountered in applying the powerful stability theories based on the concepts of Liapunov. Chapter 1 is concerned with numerical solution of the transient stability problem. Following a review and comparison of synchronous machine models the superiority of a particular model from the point of view of combined computing time and accuracy is demonstrated. A digital computer program incorporating all the synchronous machine models discussed, and an induction machine model, is described and results of a practical multi-machine transient stability study are presented. Chapter 2 reviews certain concepts and theorems due to Liapunov. In Chapter 3 transient stability regions of single, two and multi~machine systems are investigated through the use of energy type Liapunov functions. The treatment removes several mathematical difficulties encountered in earlier applications of the method. In Chapter 4 a simple criterion for the steady state stability of a multi-machine system is developed and compared with established criteria and a state space approach. In Chapters 5, 6 and 7 dynamic stability and small signal dynamic response are studied through a state space representation of the system. In Chapter 5 the state space equations are derived for single machine systems. An example is provided in which the dynamic stability limit curves are plotted for various synchronous machine representations. In Chapter 6 the state space approach is extended to multi~machine systems. To draw conclusions concerning dynamic stability or dynamic response the system eigenvalues must be properly interpreted, and a discussion concerning correct interpretation is included. Chapter 7 presents a discussion of the optimisation of power system small sjgnal performance through the use of Liapunov functions.
Resumo:
A system for the NDI' testing of the integrity of conposite materials and of adhesive bonds has been developed to meet industrial requirements. The vibration techniques used were found to be applicable to the development of fluid measuring transducers. The vibrational spectra of thin rectangular bars were used for the NDT work. A machined cut in a bar had a significant effect on the spectrum but a genuine crack gave an unambiguous response at high amplitudes. This was the generation of fretting crack noise at frequencies far above that of the drive. A specially designed vibrational decrement meter which, in effect, measures mechanical energy loss enabled a numerical classification of material adhesion to be obtained. This was used to study bars which had been flame or plasma sprayed with a variety of materials. It has become a useful tool in optimising coating methods. A direct industrial application was to classify piston rings of high performance I.C. engines. Each consists of a cast iron ring with a channel into which molybdenum, a good bearing surface, is sprayed. The NDT classification agreed quite well with the destructive test normally used. The techniques and equipment used for the NOT work were applied to the development of the tuning fork transducers investigated by Hassan into commercial density and viscosity devices. Using narrowly spaced, large area tines a thin lamina of fluid is trapped between them. It stores a large fraction of the vibrational energy which, acting as an inertia load reduces the frequency. Magnetostrictive and piezoelectric effects together or in combination enable the fork to be operated through a flange. This allows it to be used in pipeline or 'dipstick' applications. Using a different tine geometry the viscosity loading can be predoninant. This as well as the signal decrement of the density transducer makes a practical viscometer.
Resumo:
Firstly, we numerically model a practical 20 Gb/s undersea configuration employing the Return-to-Zero Differential Phase Shift Keying data format. The modelling is completed using the Split-Step Fourier Method to solve the Generalised Nonlinear Schrdinger Equation. We optimise the dispersion map and per-channel launch power of these channels and investigate how the choice of pre/post compensation can influence the performance. After obtaining these optimal configurations, we investigate the Bit Error Rate estimation of these systems and we see that estimation based on Gaussian electrical current systems is appropriate for systems of this type, indicating quasi-linear behaviour. The introduction of narrower pulses due to the deployment of quasi-linear transmission decreases the tolerance to chromatic dispersion and intra-channel nonlinearity. We used tools from Mathematical Statistics to study the behaviour of these channels in order to develop new methods to estimate Bit Error Rate. In the final section, we consider the estimation of Eye Closure Penalty, a popular measure of signal distortion. Using a numerical example and assuming the symmetry of eye closure, we see that we can simply estimate Eye Closure Penalty using Gaussian statistics. We also see that the statistics of the logical ones dominates the statistics of the logical ones dominates the statistics of signal distortion in the case of Return-to-Zero On-Off Keying configurations.
Resumo:
Formulating manufacturing business strategy is often fragmented in as much as current tools address upstream and downstream vertical integration with product integration, or more recently, product and infrastructure integration. Rarely do tools address all of these dimensions in an holistic manner. The research described in this paper is that undertaken in the MAPSTRAT project: a scoping study with industrial partners, aiming to satisfy this business need. A comprehensive literature study is described which is contextualized using six case studies. The paper stresses the importance of ‘joined-up thinking’ and outlines plans for an appropriate tool that is under development.