1000 resultados para nucleation mode
Resumo:
A Mode Selective Switch based around an LCoS Spatial Light Modulator is demonstrated to optically demultiplex modes with the same propagation constants to the same output fibres, using a common phase mask for all channels. © 2012 IEEE.
Resumo:
A Spatial Light Modulator and a non-specialized multimode coupler are used together to provide sufficient channel isolation and modal bandwidth for 2x12.5Gbps NRZ over 2km of standard graded-index multimode fibre without DSP. © 2012 IEEE.
Resumo:
We report an erbium-doped, nanotube mode-locked fiber oscillator generating 74 fs pulses with 63 nm spectral width. This all-fiber-based laser is a simple, low-cost source for time-resolved optical spectroscopy, as well as for many applications where high resolution driven by short pulse durations is required. © 2012 American Institute of Physics.
Resumo:
We demonstrate mode-locking of a thulium-doped fiber laser operating at 1.94 μm, using a graphene-polymer based saturable absorber. The laser outputs 3.6 ps pulses, with ∼0.4 nJ energy and an amplitude fluctuation ∼0.5%, at 6.46 MHz. This is a simple, low-cost, stable and convenient laser oscillator for applications where eye-safe and low-photon-energy light sources are required, such as sensing and biomedical diagnostics. © 2012 Optical Society of America.
Resumo:
The design of an SLM-based mode demultiplexer is discussed and mode division multiplexing is performed using the LP0,1 and LP 0,2 modes, representing the first demonstration to propagate channels on modes with the same azimuthal index. Mode multiplexed transmission over 2 km of 50-μm OM2 fiber demonstrates a modal selectivity of 16 dB and an OSNR penalty of 1.5 dB for the transmission of 2×56 Gb/s QPSK signals. © 2012 IEEE.
Resumo:
We fabricate double-wall carbon nanotube polymer composite saturable absorbers and demonstrate stable Q-switched and Mode-locked Thulium fiber lasers in a linear cavity and a ring cavity respectively. © 2012 OSA.
Resumo:
We present the first monolithically integrated semiconductor pulse source consisting of a mode-locked laser diode, Mach-Zehnder pulse picker, and semiconductor optical amplifier. Pairs of 5.6 ps pulses are generated at a 250 MHz repetition rate. © 2012 OSA.
Resumo:
A mode-locked Raman laser, using 25 m of a GeO2 doped fiber as the gain medium, is reported employing carbon nanotubes. The oscillator generates 850 ps chirped pulses, which are externally compressed to 185 ps. © 2012 OSA.
Resumo:
The unique response of ferroic materials to external excitations facilitates them for diverse technologies, such as nonvolatile memory devices. The primary driving force behind this response is encoded in domain switching. In bulk ferroics, domains switch in a two-step process: nucleation and growth. For ferroelectrics, this can be explained by the Kolmogorov-Avrami-Ishibashi (KAI) model. Nevertheless, it is unclear whether domains remain correlated in finite geometries, as required by the KAI model. Moreover, although ferroelastic domains exist in many ferroelectrics, experimental limitations have hindered the study of their switching mechanisms. This uncertainty limits our understanding of domain switching and controllability, preventing thin-film and polycrystalline ferroelectrics from reaching their full technological potential. Here we used piezoresponse force microscopy to study the switching mechanisms of ferroelectric-ferroelastic domains in thin polycrystalline Pb 0.7Zr0.3TiO3 films at the nanometer scale. We have found that switched biferroic domains can nucleate at multiple sites with a coherence length that may span several grains, and that nucleators merge to form mesoscale domains, in a manner consistent with that expected from the KAI model. © 2012 American Physical Society.
Resumo:
A monolithically integrated MLLD-modulator-MOPA is presented generating 12.5 ps pulses. The Mach-Zehnder modulator allows tunable repetition rates from 14 GHz to 109 MHz, and the MOPA boosts the peak power by 3.2 dB. © 2012 IEEE.
Resumo:
Employing a nanotube-based saturable absorber, we demonstrate a continuously tunable (1533-1563nm) ultrafast fiber laser, with output pulsewidth switchable between picosecond (1.2 ps) and femtosecond (610 fs) regimes. © 2012 IEEE.
Resumo:
We demonstrate a dual-wavelength, carbon nanotube mode-locked Er fiber laser. The laser outputs two wavelengths at 1549nm and 1562nm, and each wavelength corresponds to pulse duration of ∼1.3ps and repetition rate of ∼11.27MHz. © 2012 IEEE.
Resumo:
We report a 2 μm ultrafast solid-state Tm: Lu2O3 laser, mode-locked by single-layer graphene, generating transform-limited ∼ 410 fs pulses, with a spectral width ∼ 11.1 nm at 2067 nm. The maximum average output power is 270 mW, at a pulse repetition frequency of 110 MHz. This is a convenient high-power transform-limited ultrafast laser at 2 μm for various applications, such as laser surgery and material processing. © 2013 American Institute of Physics.