998 resultados para nuclear physics, QCD, sea quark, parity violation, lead fluoride
Resumo:
In this work, we investigated the temperature dependence of short and long-range ferroelectric ordering in Pb(0.55)La(0.30)TiO(3) relaxor composition. High-resolution x-ray powder diffraction measurements revealed a clear spontaneous macroscopic cubic-to-tetragonal phase transition in the PLT relaxor sample at similar to 60 K below the maximum of the dielectric constant peak (T(m)). Indeed, the x-ray diffraction (XRD) data showed that at 300 K (above T(m) but below the Burns temperature, T(B)) the long-range order structure corresponds to a macroscopic cubic symmetry, space group number 221 (Pm-3m), whereas the data collected at 20 K revealed a macroscopic tetragonal symmetry, space group number 99 (P4mm) with c/a=1.0078, that is comparable to that of a normal ferroelectric. These results show that for samples with tetragonal composition, the long-range ferroelectric order may be recovered spontaneously at cryogenics temperatures, in contrast to ferroelectric samples with rhombohedral symmetry. On the other hand, x-ray absorption spectroscopy investigations intriguingly revealed the existence of local tetragonal disorder around Ti atoms for temperatures far below T(m) and above T(B), for which the sample presents macroscopic tetragonal and cubic symmetries, respectively. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3431024]
Resumo:
Ti K-edge x-ray absorption near-edge spectroscopy (XANES) and Raman scattering were used to study the solid solution effects on the structural and vibrational properties of Pb(1-x)Ba(x)Zr(0.65)Ti(0.35)O(3) with 0.0 < x < 0.40. Compared with x-ray diffraction techniques, which indicates that the average crystal symmetry changes with the substitution of Pb by Ba ions or with temperature variations for samples with x=0.00, 0.10, and 0.20, local structural probes such as XANES and Raman scattering results demonstrate that at local level, the symmetry changes are much less prominent. Theoretical XANES spectra calculation corroborate with the interpretation of the XANES experimental data.
Resumo:
We study a class of lattice field theories in two dimensions that includes gauge theories. We show that in these theories it is possible to implement a broader notion of local symmetry, based on semisimple Hopf algebras. A character expansion is developed for the quasitopological field theories, and partition functions are calculated with this tool. Expected values of generalized Wilson loops are defined and studied with the character expansion.
Resumo:
We present an anisotropic correlated electron model on a periodic lattice, constructed from an R-matrix associated with the Temperley-Lieb algebra. By modification of the coupling of the first and last sites we obtain a model with quantum algebra invariance.
Resumo:
A novel contribution to the leptonic CP asymmetries in type II seesaw leptogenesis scenarios is obtained for the cases in which flavor effects are relevant for the dynamics of leptogenesis. In the so-called flavored leptogenesis regime, the interference between the tree-level amplitude of the scalar triplet decaying into two leptons and the one-loop wave function correction with leptons in the loop, leads to a new nonvanishing CP asymmetry contribution. The latter conserves total lepton number but violates lepton flavor. Cases in which this novel contribution may be dominant in the generation of the baryon asymmetry are briefly discussed.
Resumo:
We study predictive textures for the lepton mass matrices in which the charged-lepton mass matrix has either four or five zero matrix elements while the neutrino Majorana mass matrix has, respectively, either four or three zero matrix elements. We find that all the viable textures of these two kinds share many predictions: the neutrino mass spectrum is inverted, the sum of the light-neutrino masses is close to 0.1 eV, the Dirac phase delta in the lepton mixing matrix is close to either 0 or pi, and the mass term responsible for neutrinoless double-beta decay lies in between 12 and 22 meV. (C) 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license.
Resumo:
A modified version of the metallic-phase pseudofermion dynamical theory (PDT) of the 1D Hubbard model is introduced for the spin dynamical correlation functions of the half-filled 1D Hubbard model Mott– Hubbard phase. The Mott–Hubbard insulator phase PDT is applied to the study of the model longitudinal and transverse spin dynamical structure factors at finite magnetic field h, focusing in particular on the sin- gularities at excitation energies in the vicinity of the lower thresholds. The relation of our theoretical results to both condensed-matter and ultra-cold atom systems is discussed.
Resumo:
Many extensions of the Standard Model posit the existence of heavy particles with long lifetimes. This article presents the results of a search for events containing at least one long-lived particle that decays at a significant distance from its production point into two leptons or into five or more charged particles. This analysis uses a data sample of proton-proton collisions at s√ = 8 TeV corresponding to an integrated luminosity of 20.3 fb−1 collected in 2012 by the ATLAS detector operating at the Large Hadron Collider. No events are observed in any of the signal regions, and limits are set on model parameters within supersymmetric scenarios involving R-parity violation, split supersymmetry, and gauge mediation. In some of the search channels, the trigger and search strategy are based only on the decay products of individual long-lived particles, irrespective of the rest of the event. In these cases, the provided limits can easily be reinterpreted in different scenarios.
Resumo:
The rigorous and transparent treatment of the effects of nuclear vibrational motion in two-photon absorption (TPA) was discussed. Perturbation formula for diatomic molecules were developed and applied to the X¹Σ+–A¹Π transition in CO. The analysis showed that the vibrations played an important role in TPA, just as their role in the calculation of conventional nonlinear optical (NLO) hyperpolarizabilities
Resumo:
The occurrence of negative values for Fukui functions was studied through the electronegativity equalization method. Using algebraic relations between Fukui functions and different other conceptual DFT quantities on the one hand and the hardness matrix on the other hand, expressions were obtained for Fukui functions for several archetypical small molecules. Based on EEM calculations for large molecular sets, no negative Fukui functions were found
Resumo:
Linear response functions are implemented for a vibrational configuration interaction state allowing accurate analytical calculations of pure vibrational contributions to dynamical polarizabilities. Sample calculations are presented for the pure vibrational contributions to the polarizabilities of water and formaldehyde. We discuss the convergence of the results with respect to various details of the vibrational wave function description as well as the potential and property surfaces. We also analyze the frequency dependence of the linear response function and the effect of accounting phenomenologically for the finite lifetime of the excited vibrational states. Finally, we compare the analytical response approach to a sum-over-states approach
Resumo:
In the static field limit, the vibrational hyperpolarizability consists of two contributions due to: (1) the shift in the equilibrium geometry (known as nuclear relaxation), and (2) the change in the shape of the potential energy surface (known as curvature). Simple finite field methods have previously been developed for evaluating these static field contributions and also for determining the effect of nuclear relaxation on dynamic vibrational hyperpolarizabilities in the infinite frequency approximation. In this paper the finite field approach is extended to include, within the infinite frequency approximation, the effect of curvature on the major dynamic nonlinear optical processes
Resumo:
An implicitly parallel method for integral-block driven restricted active space self-consistent field (RASSCF) algorithms is presented. The approach is based on a model space representation of the RAS active orbitals with an efficient expansion of the model subspaces. The applicability of the method is demonstrated with a RASSCF investigation of the first two excited states of indole
Resumo:
The vibrational configuration interaction method used to obtain static vibrational (hyper)polarizabilities is extended to dynamic nonlinear optical properties in the infinite optical frequency approximation. Illustrative calculations are carried out on H2 O and N H3. The former molecule is weakly anharmonic while the latter contains a strongly anharmonic umbrella mode. The effect on vibrational (hyper)polarizabilities due to various truncations of the potential energy and property surfaces involved in the calculation are examined
Resumo:
The total energy of molecule in terms of 'fuzzy atoms' presented as sum of one- and two-atomic energy components is described. The divisions of three-dimensional physical space into atomic regions exhibit continuous transition from one to another. The energy components are on chemical energy scale according to proper definitions. The Becke's integration scheme and weight function determines realization of method which permits effective numerical integrations