851 resultados para nose fracture
Resumo:
La sostituzione totale d’anca è uno degli interventi chirurgici con le più alte percentuali di successo. Esistono due varianti di protesi d’anca che differiscono in base al metodo di ancoraggio all’osso: cementate (fissaggio tramite cemento osseo) e non cementate (fissaggio tramite forzamento). Ad oggi, i chirurghi non hanno indicazioni quantitative di supporto per la scelta fra le due tipologie di impianto, decidendo solo in base alla loro esperienza. Due delle problematiche che interessano le protesi non cementate sono la possibilità di frattura intra-operatoria durante l’inserimento forzato e il riassorbimento osseo nel periodo di tempo successivo all’intervento. A partire da rilevazioni densitometriche effettuate su immagini da TC di pazienti sottoposti a protesi d’anca non cementata, sono stati sviluppati due metodi: 1) per la valutazione del rischio di frattura intra-operatorio tramite analisi agli elementi finiti; 2) per la valutazione della variazione di densità minerale ossea (tridimensionalmente attorno alla protesi) dopo un anno dall’operazione. Un campione di 5 pazienti è stato selezionato per testare le procedure. Ciascuno dei pazienti è stato scansionato tramite TC in tre momenti differenti: una acquisita prima dell’operazione (pre-op), le altre due acquisite 24 ore (post 24h) e 1 anno dopo l’operazione (post 1y). I risultati ottenuti hanno confermato la fattibilità di entrambi i metodi, riuscendo inoltre a distinguere e a quantificare delle differenze fra i vari pazienti. La fattibilità di entrambe le metodologie suggerisce la loro possibilità di impiego in ambito clinico: 1) conoscere la stima del rischio di frattura intra-operatorio può servire come strumento di guida per il chirurgo nella scelta dell’impianto protesico ottimale; 2) conoscere la variazione di densità minerale ossea dopo un anno dall’operazione può essere utilizzato come strumento di monitoraggio post-operatorio del paziente.
Resumo:
Lo scopo di questo lavoro di tesi è stato quello di studiare l’efficacia e l’applicabilità dello strumento HERACLES II Flash Gas Chromatography Electronic Nose mediante l’analisi di un set molto ampio di campioni di oli d’oliva vergini reperiti presso un concorso nazionale. Nello specifico, mediante elaborazioni di statistica multivariata dei dati, è stata valutata sia la capacità discriminante del metodo per campioni caratterizzati da un diverso profilo sensoriale, sia la correlazione esistente tra l’intensità delle sensazioni percepite per via sensoriale ed i dati ottenuti mediante l’analisi strumentale. La valutazione delle caratteristiche sensoriali dei campioni è stata realizzata in occasione dello stesso concorso da parte di un gruppo di giudici esperti e secondo le modalità stabilite dai regolamenti comunitari. Ogni campione è stato valutato da almeno 8 assaggiatori che hanno determinato l’intensità di caratteristiche olfattive (eventuali difetti, fruttato e note secondarie positive) e gustative (amaro e piccante). La determinazione dei composti volatili, invece, è stata condotta mediante lo strumento HERACLES II Electronic Nose (AlphaMOS), dotato di due colonne cromatografiche caratterizzate da diversa polarità (MXT-5 con fase stazionaria apolare e MXT-WAX con fase stazionaria polare), ciascuna collegata ad un rivelatore di tipo FID. L’elaborazione multivariata dei dati è stata realizzata mediante il software in dotazione con lo strumento.
Resumo:
Permeability of a rock is a dynamic property that varies spatially and temporally. Fractures provide the most efficient channels for fluid flow and thus directly contribute to the permeability of the system. Fractures usually form as a result of a combination of tectonic stresses, gravity (i.e. lithostatic pressure) and fluid pressures. High pressure gradients alone can cause fracturing, the process which is termed as hydrofracturing that can determine caprock (seal) stability or reservoir integrity. Fluids also transport mass and heat, and are responsible for the formation of veins by precipitating minerals within open fractures. Veining (healing) thus directly influences the rock’s permeability. Upon deformation these closed factures (veins) can refracture and the cycle starts again. This fracturing-healing-refacturing cycle is a fundamental part in studying the deformation dynamics and permeability evolution of rock systems. This is generally accompanied by fracture network characterization focusing on network topology that determines network connectivity. Fracture characterization allows to acquire quantitative and qualitative data on fractures and forms an important part of reservoir modeling. This thesis highlights the importance of fracture-healing and veins’ mechanical properties on the deformation dynamics. It shows that permeability varies spatially and temporally, and that healed systems (veined rocks) should not be treated as fractured systems (rocks without veins). Field observations also demonstrate the influence of contrasting mechanical properties, in addition to the complexities of vein microstructures that can form in low-porosity and permeability layered sequences. The thesis also presents graph theory as a characterization method to obtain statistical measures on evolving network connectivity. It also proposes what measures a good reservoir should have to exhibit potentially large permeability and robustness against healing. The results presented in the thesis can have applications for hydrocarbon and geothermal reservoir exploration, mining industry, underground waste disposal, CO2 injection or groundwater modeling.
Resumo:
Background: Ear, nose and throat foreign bodies (FBs) are common occurrences particularly among children. This study reviewed the clinical spectrum of ENT FBs, their treatment and outcomes as seen in a tertiary health center in North Western Nigeria. Method: The study was a retrospective chart review of patients that were managed for FB impaction in a tertiary health institution in North Western Nigeria over a four year period. Result: There were 239 patients; M: F: 1.2:1. Majority of FB impaction (46.4%) occurred in children. Majority (68.7%) were otic and FBs. 18.0% of the patients had had failed attempted removal by non ENT specialists. About 25% of these patients developed complications. Majority (62.0%) of these complications occurred in the hand of non-ENT medical personnel. Conclusion: Ear, nose and throat foreign bodies are common in North-Western Nigeria with the highest incidence in children. Removal attempts by untrained health professionals and lack of experience in FB management predisposes to complications. Parental education on close monitoring of their children to avoid such incidences and the need to immediately seek an Otorhinolaryngologist to prevent complications are emphasized.
Resumo:
International audience
Resumo:
The milling of thin parts is a high added value operation where the machinist has to face the chatter problem. The study of the stability of these operations is a complex task due to the changing modal parameters as the part loses mass during the machining and the complex shape of the tools that are used. The present work proposes a methodology for chatter avoidance in the milling of flexible thin floors with a bull-nose end mill. First, a stability model for the milling of compliant systems in the tool axis direction with bull-nose end mills is presented. The contribution is the averaging method used to be able to use a linear model to predict the stability of the operation. Then, the procedure for the calculation of stability diagrams for the milling of thin floors is presented. The method is based on the estimation of the modal parameters of the part and the corresponding stability lobes during the machining. As in thin floor milling the depth of cut is already defined by the floor thickness previous to milling, the use of stability diagrams that relate the tool position along the tool-path with the spindle speed is proposed. Hence, the sequence of spindle speeds that the tool must have during the milling can be selected. Finally, this methodology has been validated by means of experimental tests.
Resumo:
Despite the efforts to better manage biosolids field application programs, biosolids managers still lack of efficient and reliable tools to apply large quantities of material while avoiding odor complaints. Objectives of this research were to determine the capabilities of an electronic nose in supporting process monitoring of biosolids production and, to compare odor characteristics of biosolids produced through thermal-hydrolysis anaerobic digestion (TH-AD) to those of alkaline stabilization in the plant, under storage and in the field. A method to quantify key odorants was developed and full scale sampling and laboratory simulations were performed. The portable electronic nose (PEN3) was tested for its capabilities of distinguishing alkali dosages in the biosolids production process. Frequency of recognition of unknown samples was tested achieving highest accuracy of 81.1%. This work exposed the need for a different and more sensitive electronic nose to assure its applicability at full scale for this process. GC-MS results were consistent with those reported in literature and helped to elucidate the behavior of the pattern recognition of the PEN3. Odor characterization of TH-AD and alkaline stabilized biosolids was achieved using olfactometry measurements and GC-MS. Dilution-to-threshold of TH-AD biosolids increased under storage conditions but no correlation was found with the target compounds. The presence of furan and three methylated homologues in TH-AD biosolids was reported for the first time proposing that these compounds are produced during thermal hydrolysis process however, additional research is needed to fully describe the formation of these compounds and the increase in odors. Alkaline stabilized biosolids reported similar odor concentration but did not increase and the ‘fishy’ odor from trimethylamine emissions resulted in more offensive and unpleasant odors when compared to TH-AD. Alkaline stabilized biosolids showed a spike in sulfur and trimethylamine after 3 days of field application when the alkali addition was not sufficient to meet regulatory standards. Concentrations of target compounds from field application of TH-AD biosolids gradually decreased to below the odor threshold after 3 days. This work increased the scientific understanding on odor characteristics and behavior of two types of biosolids and on the application of electronic noses to the environmental engineering field.
Resumo:
191 p.
Resumo:
The application of 3D grain-based modelling techniques is investigated in both small and large scale 3DEC models, in order to simulate brittle fracture processes in low-porosity crystalline rock. Mesh dependency in 3D grain-based models (GBMs) is examined through a number of cases to compare Voronoi and tetrahedral grain assemblages. Various methods are used in the generation of tessellations, each with a number of issues and advantages. A number of comparative UCS test simulations capture the distinct failure mechanisms, strength profiles, and progressive damage development using various Voronoi and tetrahedral GBMs. Relative calibration requirements are outlined to generate similar macro-strength and damage profiles for all the models. The results confirmed a number of inherent model behaviors that arise due to mesh dependency. In Voronoi models, inherent tensile failure mechanisms are produced by internal wedging and rotation of Voronoi grains. This results in a combined dependence on frictional and cohesive strength. In tetrahedral models, increased kinematic freedom of grains and an abundance of straight, connected failure pathways causes a preference for shear failure. This results in an inability to develop significant normal stresses causing cohesional strength dependence. In general, Voronoi models require high relative contact tensile strength values, with lower contact stiffness and contact cohesional strength compared to tetrahedral tessellations. Upscaling of 3D GBMs is investigated for both Voronoi and tetrahedral tessellations using a case study from the AECL’s Mine-by-Experiment at the Underground Research Laboratory. An upscaled tetrahedral model was able to reasonably simulate damage development in the roof forming a notch geometry by adjusting the cohesive strength. An upscaled Voronoi model underestimated the damage development in the roof and floor, and overestimated the damage in the side-walls. This was attributed to the discretization resolution limitations.
Resumo:
Muscle strength is a common issue in fragility syndrome and sarcopenia, both of them involved in the pathogenesis of falls and fractures. The objective is to study the relationship between hand grip strength and functional recovery after hip fracture surgery. This prospective observational study included patients aged 65. years and older who were admitted to hospital for hip fracture surgery during a 12 month period. Functional status (Barthel Index), mental status (Cruz Roja Index), hand grip strength, 25/OH-Vitamin D plasmatic levels were evaluated at admission. Follow-up was performed 3. months after discharge to assess functional status and survival. Correlations between hand grip strength and the rest of variables were evaluated. Univariate and multivariate analyses were further applied. Mean age of subjects was 85.1. ±. 0.63 years. Out of 127 subjects, 103 were women and 24 were men. Hand grip strength was obtained in 85 patients (76.5%) and, values were between 3.3 and 24.8. kg and 81 patients (95.2%) had values below cut-point of sarcopenia considering European Working Group of Sarcopenia criteria. Hand grip strength at admission shows significant association to Barthel index at three months and functional recovery. It is also associated with age (P <. 0.001) (r = 0.81), sex (P = 0.001), cognitive status by Cruz Roja Index (P <. 0.001) and functional status measured at admission by Barthel Index (P <. 0.01) (r = -0.22). Multivariate analysis confirmed that variables were independently associated to grip strength. Hand grip strength measured at admission in Orthogeriatric Unit after hip fracture is directly related to functional recovery in elderly patients.
Resumo:
El objetivo del estudio es evaluar la mortalidad a un año en pacientes con fractura de cadera, mayores de 65 años tratados en un programa establecido de orto-geriatría. 298 se trataron de acuerdo al protocolo de orto-geriatría, se calculo la mortalidad a un año, se establecieron los predictores de mortalidad orto-geriátrico. La sobrevida anual se incremento de 80% a 89% (p = .039) durante los cuatro años de seguimiento del programa y disminuyo el riesgo de mortalidad anual postoperatorio (Hazard Ratio = 0.54, p = .049). La enfermedad cardiaca y la edad maor a 85 años fueron predictores positivos para mortalidad.
Resumo:
We propose a crack propagation algorithm which is independent of particular constitutive laws and specific element technology. It consists of a localization limiter in the form of the screened Poisson equation with local mesh refinement. This combination allows the cap- turing of strain localization with good resolution, even in the absence of a sufficiently fine initial mesh. In addition, crack paths are implicitly defined from the localized region, cir- cumventing the need for a specific direction criterion. Observed phenomena such as mul- tiple crack growth and shielding emerge naturally from the algorithm. In contrast with alternative regularization algorithms, curved cracks are correctly represented. A staggered scheme for standard equilibrium and screened equations is used. Element subdivision is based on edge split operations using a given constitutive quantity (either damage or void fraction). To assess the robustness and accuracy of this algorithm, we use both quasi-brittle benchmarks and ductile tests.
Resumo:
In this study, a three-dimensional (3D) non-ordinary state-based peridynamics (NOSB-PD) formulation for thermomechanical brittle and ductile fracture is presented. The Johnson–Cook (JC) constitutive and damage model is used to taken into account plastic hardening, thermal softening and fracture. The for- mulation is validated by considering two benchmark examples: 1) The Taylor-bar impact and 2) the Kalthoff– Winkler tests. The results show good agreements between the numerical simulations and the experimental results.