949 resultados para normal coordinate analysis
Resumo:
Proton therapy is growing increasingly popular due to its superior dose characteristics compared to conventional photon therapy. Protons travel a finite range in the patient body and stop, thereby delivering no dose beyond their range. However, because the range of a proton beam is heavily dependent on the tissue density along its beam path, uncertainties in patient setup position and inherent range calculation can degrade thedose distribution significantly. Despite these challenges that are unique to proton therapy, current management of the uncertainties during treatment planning of proton therapy has been similar to that of conventional photon therapy. The goal of this dissertation research was to develop a treatment planning method and a planevaluation method that address proton-specific issues regarding setup and range uncertainties. Treatment plan designing method adapted to proton therapy: Currently, for proton therapy using a scanning beam delivery system, setup uncertainties are largely accounted for by geometrically expanding a clinical target volume (CTV) to a planning target volume (PTV). However, a PTV alone cannot adequately account for range uncertainties coupled to misaligned patient anatomy in the beam path since it does not account for the change in tissue density. In order to remedy this problem, we proposed a beam-specific PTV (bsPTV) that accounts for the change in tissue density along the beam path due to the uncertainties. Our proposed method was successfully implemented, and its superiority over the conventional PTV was shown through a controlled experiment.. Furthermore, we have shown that the bsPTV concept can be incorporated into beam angle optimization for better target coverage and normal tissue sparing for a selected lung cancer patient. Treatment plan evaluation method adapted to proton therapy: The dose-volume histogram of the clinical target volume (CTV) or any other volumes of interest at the time of planning does not represent the most probable dosimetric outcome of a given plan as it does not include the uncertainties mentioned earlier. Currently, the PTV is used as a surrogate of the CTV’s worst case scenario for target dose estimation. However, because proton dose distributions are subject to change under these uncertainties, the validity of the PTV analysis method is questionable. In order to remedy this problem, we proposed the use of statistical parameters to quantify uncertainties on both the dose-volume histogram and dose distribution directly. The robust plan analysis tool was successfully implemented to compute both the expectation value and its standard deviation of dosimetric parameters of a treatment plan under the uncertainties. For 15 lung cancer patients, the proposed method was used to quantify the dosimetric difference between the nominal situation and its expected value under the uncertainties.
Resumo:
Next-generation sequencing (NGS) technology has become a prominent tool in biological and biomedical research. However, NGS data analysis, such as de novo assembly, mapping and variants detection is far from maturity, and the high sequencing error-rate is one of the major problems. . To minimize the impact of sequencing errors, we developed a highly robust and efficient method, MTM, to correct the errors in NGS reads. We demonstrated the effectiveness of MTM on both single-cell data with highly non-uniform coverage and normal data with uniformly high coverage, reflecting that MTM’s performance does not rely on the coverage of the sequencing reads. MTM was also compared with Hammer and Quake, the best methods for correcting non-uniform and uniform data respectively. For non-uniform data, MTM outperformed both Hammer and Quake. For uniform data, MTM showed better performance than Quake and comparable results to Hammer. By making better error correction with MTM, the quality of downstream analysis, such as mapping and SNP detection, was improved. SNP calling is a major application of NGS technologies. However, the existence of sequencing errors complicates this process, especially for the low coverage (
Resumo:
The genomic era brought by recent advances in the next-generation sequencing technology makes the genome-wide scans of natural selection a reality. Currently, almost all the statistical tests and analytical methods for identifying genes under selection was performed on the individual gene basis. Although these methods have the power of identifying gene subject to strong selection, they have limited power in discovering genes targeted by moderate or weak selection forces, which are crucial for understanding the molecular mechanisms of complex phenotypes and diseases. Recent availability and rapid completeness of many gene network and protein-protein interaction databases accompanying the genomic era open the avenues of exploring the possibility of enhancing the power of discovering genes under natural selection. The aim of the thesis is to explore and develop normal mixture model based methods for leveraging gene network information to enhance the power of natural selection target gene discovery. The results show that the developed statistical method, which combines the posterior log odds of the standard normal mixture model and the Guilt-By-Association score of the gene network in a naïve Bayes framework, has the power to discover moderate/weak selection gene which bridges the genes under strong selection and it helps our understanding the biology under complex diseases and related natural selection phenotypes.^
Resumo:
p53 is a tumor suppressor gene that is the most frequent target inactivated in cancers. Overexpression of wild-type p53 in rat embryo fibroblasts suppresses foci formation by other cooperating oncogenes. Introduction of wild-type p53 into cells that lack p53 arrests them at the G1/S boundary and reverses the transformed phenotype of some cells. The function of p53 in normal cells is illustrated by the ability of p53 to arrest cells at G1 phase of the cell cycle upon exposure to DNA-damaging agents including UV-irradiation and biosynthesis inhibitors.^ Since the amino acid sequence of p53 suggested that it may function as a transcription factor, we used GAL4 fusion assays to test that possibility. We found that wild-type p53 could specifically activate transcription when anchored by the GAL4 DNA binding domain. Mutant p53s, which have lost the ability to suppress foci formation by other oncogenes, were not able to activate transcription in this assay. Thus, we established a direct correlation between the tumor suppression and transactivation functions of p53.^ Having learned that p53 was a transcriptional activator, we next sought targets of p53 activation. Because many transcription factors regulate their own expression, we tested whether p53 had this autoregulatory property. Transient expression of wild-type p53 in cells increased the levels of endogenous p53 mRNA. Cotransfection of p53 together with a reporter bearing the p53 promoter confirmed that wild-type p53 specifically activates its own promoter. Deletion analysis from both the 5$\sp\prime$ and 3$\sp\prime$ ends of the promoter minimized the region responsible for p53 autoregulation to 45 bp. Methylation interference identified nucleotides involved in protein-DNA interaction. Mutations within this protected site specifically eliminated the response of the promoter to p53. In addition, multiple copies of this element confer responsiveness to wild-type p53 expression. Thus, we identified a F53 responsive element within the p53 promoter.^ The presence of a consensus NF-$\kappa$B site in the p53 promoter suggested that NF-KB may regulate p53 expression. Gel-shift experiments showed that both the p50 homodimer and the p50/p65 heterodimer bind to the p53 promoter. In addition, the p65 subunit of NF-$\kappa$B activates the p53 promoter in transient transfection experiments. TNF $\alpha$, a natural NF-$\kappa$B inducer, also activates the p53 promoter. Both p65 activation and TNF $\alpha$ induction require an intact NF-$\kappa$B site in the p53 promoter. Since NF-$\kappa$B activation occurs as a response to stress and p53 arrests cells in G1/S, where DNA repair occurs, activation of p53 by NF-$\kappa$B could be a mechanism by which cells recover from stress.^ In conclusion, we provided the first data that wild-type p53 functions as a transcriptional activator, whereas mutant p53 cannot. The correlation between growth suppression and transcriptional activation by p53 implies a pathway of tumor suppression. We have analyzed upstream components of the pathway by the identification of both p53 and NF-$\kappa$B as regulators of the p53 promoter. ^
Resumo:
During vertebrate embryogenesis, cells from the paraxial mesoderm coalesce in a rostral-to-caudal progression to form the somites. Subsequent compartmentalization of the somites yields the sclerotome, myotome and dermatome, which give rise to the axial skeleton, axial musculature, and dermis, respectively. Recently, we cloned a novel basic-Helix-Loop-Helix (bHLH) protein, called scleraxis, which is expressed in the sclerotome, in mesenchymal precursors of bone and cartilage, and in connective tissues. This dissertation focuses on the cloning, expression and functional analysis of a bHLH protein termed paraxis, which is nearly identical to scleraxis within the bHLH region but diverges in both its amino and carboxyl termini. During the process of mouse embryogenesis, paraxis transcripts are first detected at about day 7.5 post coitum within the primitive mesoderm lying posterior to the head and heart primordia. Subsequently, paraxis expression progresses caudally through the paraxial mesoderm, immediately preceding somite formation. Paraxis is expressed at high levels in newly formed somites before the first detectable expression of the myogenic bHLH genes, and as the somite becomes compartmentalized, paraxis becomes downregulated within the myotome.^ To determine the function of paraxis during mammalian embryogenesis, mice were generated with a null mutation in the paraxis locus. Paraxis null mice survived until birth, but exhibited severe foreshortening along the anteroposterior axis due to the absence of vertebrae caudal to the midthoracic region. The phenotype also included axial skeletal defects, particularly shortened bifurcated ribs which were detached from the vertebral column, fused vertebrae and extensive truncation and disorganization caudal to the hindlimbs. Mutant neonates also lacked normal levels of trunk muscle and exhibited defects in the dermis as well as the stratification of the epidermis. Analysis of paraxis -/- mutant embryos has revealed a failure of the somites to both properly epithelialize and compartmentalize, resulting in defects in somite-derived cell lineages. These results suggest that paraxis is an essential component of the genetic pathway regulating somitogenesis. ^
Resumo:
An important question in developmental biology is how embryonic cell types are derived from a fertilized egg. To address this question, this thesis investigates the mechanisms by which the aboral ectoderm-specific Spec2a gene is spatially and temporally regulated during sea urchin embryogenesis. The Spec2a gene of the sea urchin Strongylocentratus purpuratus has served as a valuable maker to understand the basis of lineage-specific gene activation and the role of transcription factors in cell fate specification. The hypothesis is that transcription factors responsible for cell type-specific gene activation are key components in the initial cell specification step. The Spec2a gene, which encodes a small cytosolic calcium-binding protein, is expressed exclusively in aboral ectoderm cell lineages. The 1516-bp control region of the Spec2a gene contains a 188-bp enhancer element required for temporal activation and aboral ectoderm/mesenchyme cell expression, while an unidentified element upstream of the enhancer represses expression in mesenchyme cells. Using an enhancer activation assay, combined with site-directed mutagenesis, I showed that three TAATCC/T sites within the enhancer are responsible for enhancer activity. Mutagenizing these sites and a fourth one just upstream abolished all activity from the Spec2a control region. A 77-bp DNA fragment from the Spec2a enhancer containing two of the TAATCC/T sites is sufficient for aboral ectoderm/mesenchyme cell expression. A cDNA encoding SpOtx, an orthodenticle-related protein, was cloned from S. purpuratus and shown to bind with high affinity to the TAATCC/T sequences within the Spec2a control region. SpOtx transcripts were found initially in all cells of the cleaving embryo, but they gradually became restricted to oral ectoderm and endoderm cells, suggesting that SpOtx might play a role in the initial temporal activation of the Spec2a gene and most likely has additional functions in the developing embryo. To reveal the broader biological functions of SpOtx, I injected SpOtx mRNA into living sea urchin eggs to determine what effects overexpressing the SpOtx protein might have on embryo development. SpOtx mRNA-injected embryos displayed dramatic alterations in development. Instead of developing into pluteus larvae with 15 different cell types, uniform epithelia balls were formed. These balls consisted of a thin layer of squamous cells with short cilia highly reminiscent of aboral ectoderm. Immunohistochemical staining and RT-PCR demonstrated that the SpOtx-injected embryoids expressed aboral ectoderm markers uniformly, but showed very weak or no expression of markers for non-aboral ectoderm cell types. These data strongly suggested that overexpression of SpOtx redirected the normal fate of non-aboral ectoderm cells to that of aboral ectoderm. These results show that SpOtx is involved in aboral ectoderm differentiation by activating aboral ectoderm-specific genes and that modulating its expression can lead to changes in cell fate. ^
Resumo:
Cellular oncogenes and tumor suppressor genes regulate cellular adhesion and proliferation, two important events in malignant transformation. Even though receptor-like protein tyrosine phosphatases (R-PTPs) can influence these events, their role in malignant transformation has not been studied. The major goal of this study was to determine whether downregulation of R-PTP$\mu$ expression in lung epithelial cells is associated with or causal to neoplastic transformation. Examination of R-PTP$\mu$ expression in normal and carcinoma cells demonstrated that lung epithelial cells expressed R-PTP$\mu$ whereas lung carcinoma cells did not, and that incubation with TGF-$\alpha$ and HGF induced a two fold increase in R-PTP$\mu$ mRNA expression. To associate the expression of R-PTP$\mu$ with neoplastic transformation, we transfected lung epithelial cells with the H-ras oncogene. Transformation resulted in the activation of the MAPK signal transduction pathway, the hyperphosphorylation of c-met, and the production of HGF. Upon analysis of R-PTP$\mu$ expression, we observed a significant decrease in R-PTP$\mu$ mRNA and protein levels suggesting that transformation can directly or indirectly downregulate the expression of R-PTP$\mu.$ TGF-$\beta$ reversed the H-ras transformed phenotype, an event directly correlated with upregulation of R-PTP$\mu.$ To provide a casual relationship between R-PTP$\mu$ and cessation of tumor cell growth, we transfected carcinoma cells with the wild type R-PTP$\mu$ cDNA. Transiently expressing cells were selected by FACS using the mAb 3D7 and plated into individual wells. Carcinoma cells positive for R-PTP$\mu$ expression did not grow into colonies whereas non-R-PTP$\mu$ expressing carcinoma cells did, suggesting that expression of R-PTP$\mu$ arrested cell growth. To better understand the growth arrest induced by R-PTP$\mu$, we transfected the H-ras transformed lung epithelial cell line (MvLu-1-ras) with R-PTP$\mu$ (MvLu-1-ras/R-PTP$\mu$). Examination of growth factor receptor phosphorylation revealed significant inhibition of c-met and EGF-R. Furthermore, these cells underwent apoptosis in the absence of serum. Taken together the data demonstrate that the downregulation of R-PTP$\mu$ expression is an important step in neoplastic transformation of lung epithelial cells and that its presence can induce apoptosis and inhibit the signaling of c-met and EGF-R, two major growth factor receptors in lung carcinoma. In conclusion, the expression of R-PTP$\mu$ is inversely correlated with neoplastic transformation, growth and survival of tumor cells. ^
Resumo:
To identify more mutations that can affect the early development of Myxococcus xanthus, the synthetic transposon TnT41 was designed and constructed. By virtue of its special features, it can greatly facilitate the processes of mutation screening/selection, mapping, cloning and DNA sequencing. In addition, it allows for the systematic discovery of genes in regulatory hierarchies using their target promoters. In this study, the minimal regulatory region of the early developmentally regulated gene 4521 was used as a reporter in the TnT41 mutagenesis. Both positive (P) mutations and negative (N) mutations were isolated based on their effects on 4521 expression.^ Four of these mutations, i.e. N1, N2, P52 and P54 were analyzed in detail. Mutations N1 and N2 are insertion mutations in a gene designated sasB. The sasB gene is also identified in this study by genetic and molecular analysis of five UV-generated 4521 suppressor mutations. The sasB gene encodes a protein without meaningful homology in the databases. The sasB gene negatively regulates 4521 expression possibly through the SasS-SasR two component system. A wild-type sasB gene is required for normal M. xanthus fruiting body formation and sporulation.^ Cloning and sequencing analysis of the P52 mutation led to the identification of an operon that encodes the M. xanthus high-affinity branched-chain amino acid transporter system. This liv operon consists of five genes designated livK, livH, livM, livC, and livF, respectively. The Liv proteins are highly similar to their counterparts from other bacteria in both amino acid sequences, functional motifs and predicted secondary structures. This system is required for development since liv null mutations cause abnormality in fruiting body formation and a 100-fold decrease in sporulation efficiency.^ Mutation P54 is a TnT41 insertion in the sscM gene of the ssc chemotaxis system, which has been independently identified by Dr. Shi's lab. The sscM gene encodes a MCP (methyl-accepting chemotaxis protein) homologue. The SscM protein is predicted to contain two transmembrane domains, a signaling domain and at least one putative methylation site. Null mutations of this gene abolish the aggregation of starving cells at a very early stage, though the sporulation levels of the mutant can reach 10% that of wild-type cells. ^
Resumo:
Heterotrimeric GTP-binding proteins, G proteins, are integral components of eukaryotic signaling systems linking extracellular signals to intracellular responses. Through coupling to seven-transmembrane helix receptors, G proteins convey primary signaling events into multi-leveled cascades of intracellular activity by regulating downstream enzymes, collectively called effectors. The effector enzymes regulated by G proteins include adenylyl cyclase, cAMP phosphodiesterase, phospolipase C-β, mitogen-activated protein kinases, and ion channels. ^ Neurospora crassa is a multicellular, filamentous fungus that is capable of both asexual and sexual reproduction by elaboration of specialized, developmentally controlled structures that give rise to either asexual or sexual spores, respectively. N. crassa possesses at least three heterotrimeric Gα proteins (GNA-1–3) and one Gβ subunit (GNB-1). GNA-1 was the first microbial protein that could be classified in the Gαi superfamily based on its amino acid identity and demonstration that it is a substrate for ADP-ribosylation by pertussis toxin. ^ Experiments were designed to identify the signal transduction pathways and the effector enzymes regulated by GNA-1. Targeted gene-replacement of gna-1 revealed that GNA-1 controls multiple developmental pathways including both asexual and sexual reproduction, maintenance of growth, and resistance to osmotic stress. The Gαi and Gαz members of the Gαi superfamily negatively regulate adenylyl cyclase activity in mammalian cells; therefore, adenylyl cyclase and cAMP levels were measured in Δgna-1 strains and also in strains that were deleted for both gna-1 and gna-2, a second Gα in N. crassa shown to have overlapping functions with GNA-1. Direct measurements of adenylyl cyclase activity revealed that GNA-1, but not GNA-2, was responsible for GTP-stimulated adenylyl cyclase activity in N. crassa. Furthermore, anti-GNA-1 IgG could specifically inhibit GTP-stimulated adenylyl cyclase activity in wild-type strain extracts. These studies also provided evidence that N. crassa possesses feedback mechanisms that control steady-state cAMP levels through indirect regulation of cAMP-phosphodiesterase activity; mutations in gna-1 and gna-2 were additive in their effect on lowering cAMP-phosphodiesterase activity under growth conditions where steady-state cAMP levels were normal but GTP-stimulated adenylyl cyclase activity was reduced 90% in comparison to control strains. ^ Genetic and biochemical epistasis experiments utilizing a Δ gna-1 cr-1 mutant suggest that GNA-1 is essential for female fertility in a cAMP-independent pathway. Furthermore, deletion of gna-1 in a cr-1 background exacerbated many of the defects already observed in the cr-1 strain including more severe growth restriction and developmental defects. However, deletion of gna-1 had no effect on the increased thermotolerance of cr-1, which has been attributed to loss of cAMP. cr-1 possesses GNA-1 protein, and crude membrane fractions from this strain reconstituted GTP-stimulated adenylyl cyclase activity in Δgna-1 membrane fractions. These studies provide direct evidence for the involvement of Gα proteins in the regulation of adenylyl cyclase activity in eukaryotic microbes. ^
Resumo:
Normal development and tissue homeostasis requires the carefully orchestrated balance between cell proliferation and cell death. Cell cycle checkpoints control the extent of cell proliferation. Cell death is coordinated through the activation of a cell suicide pathway that results in the morphologically recognizable form of death, apoptosis. Tumorigenesis requires that the balance between these two pathways be disrupted. The tumor suppressor protein Rb has not only been shown to be involved in the enforcement of cell cycle checkpoints, but has also been implicated in playing a role in the regulation of apoptosis. The manner in which Rb enforces cell cycle checkpoints has been well studied; however, its involvement in the regulation of apoptosis is still very unclear. p84N5 is a novel nuclear death domain containing protein that has been shown to interact with the N-terminus of Rb. The fact that it contains a death domain and the fact that it is nuclear localized possibly provides the first known mechanism for apoptotic signaling from the nucleus. The following study tested the hypothesis that the novel exclusively nuclear death domain containing protein p84N5 is an important mediator of programmed cell death and that its apoptotic function is reliant upon its nuclear localization and is regulated by unique functional domains within the p84N5 protein. We identified the p84N5 nuclear localization signal (NLS), eliminated it, and tested the functional significance of nuclear localization by using wild type and mutant sequences fused to EGFP-C1 (Clontech) to create wild type GFPN5 and subsequent mutants. The results of these assays demonstrated exclusive nuclear localization of GFPN5 is required for normal p84N5 induced apoptosis. We further conducted large-scale mutagenesis of the GFPN5 construct to identify a minimal region within p84N5 capable of interacting with Rb. We were able to identify a minimal sequence containing p84N5 amino acids 318 to 464 that was capable of interacting with Rb in co-immunoprecipitation assays. We continued by conducting a structural and functional analysis to identify the region or regions within p84N5 responsible for inducing apoptosis. Point mutations and small-scale deletions within the death domain of p84N5 lessened the effect but did not eliminate p84N5-induced cytotoxicity. Further analysis revealed that the minimal sequence of 318 to 464 of p84N5 was capable of inducing apoptosis to a similar degree as wild-type GFPN5 protein. Since amino acids 318 to 464 of p84N5 are capable of inducing apoptosis and interacting with Rb, we propose possible mechanisms whereby p84N5 may function in a Rb regulated manner. These results demonstrate that p84N5 induced apoptosis is reliant upon its nuclear localization and is regulated by unique functional domains within the p84N5 protein. ^
Resumo:
To estimate the kinematics of the SIRGAS reference frame, the Deutsches Geodätisches Forschungsinstitut (DGFI) as the IGS Regional Network Associate Analysis Centre for SIRGAS (IGS RNNAC SIR), yearly computes a cumulative (multi-year) solution containing all available weekly solutions delivered by the SIRGAS analysis centres. These cumulative solutions include those models, standards, and strategies widely applied at the time in which they were computed and cover different time spans depending on the availability of the weekly solutions. This data set corresponds to the multi-year solution SIR11P01. It is based on the combination of the weekly normal equations covering the time span from 2000-01-02 (GPS week 1043) to 2011-04-16 (GPS week 1631), when the IGS08 reference frame was introduced. It refers to ITRF2008, epoch 2005.0 and contains 230 stations with 269 occupations. Its precision was estimated to be ±1.0 mm (horizontal) and ±2.4 mm (vertical) for the station positions, and ±0.7 mm/a (horizontal) and ±1.1 mm/a (vertical) for the constant velocities. Computation strategy and results are in detail described in Sánchez and Seitz (2011). The IGS RNAAC SIR computation of the SIRGAS reference frame is possible thanks to the active participation of many Latin American and Caribbean colleagues, who not only make the measurements of the stations available, but also operate SIRGAS analysis centres processing the observational data on a routine basis (more details in http://www.sirgas.org). The achievements of SIRGAS are a consequence of a successful international geodetic cooperation not only following and meeting concrete objectives, but also becoming a permanent and self-sustaining geodetic community to guarantee quality, reliability, and long-term stability of the SIRGAS reference frame. The SIRGAS activities are strongly supported by the International Association of Geodesy (IAG) and the Pan-American Institute for Geography and History (PAIGH). The IGS RNAAC SIR highly appreciates all this support.
Resumo:
The environmental interpretation of the 13C/12C variations in the skeletons of massive corals is still a matter of debate. A 19-year seasonal skeletal 13C/12C record of a shallow-water Pontes coral from the northern Red Sea (Gulf of Aqaba) documents interannual events of extraordinarily large plankton blooms, indicated by anomalous 13C depletions in the coral skeleton. These blooms are caused by deep vertical water mass mixing, convectively driven in colder winters, which results in increased supplies of nutrients to the surface waters. The deep vertical mixings can sometimes be driven by the cooling occurring throughout the Middle East after large tropical volcanic eruptions. We therefore have evidence in our coral skeletal 13C/12C record for an indirect volcanic signal of the eruptions of El Chichón (1982) and Mount Pinatubo (1991). Deep mixing induced 13C/12C variations of the dissolved inorganic carbon in the surface waters can be neglected at this location. We therefore suggest that the 13C skeletal depletions can be best explained by changes in the coral's autotrophy-heterotrophy diet, through increased heterotrophic feeding on Zooplankton during the blooms. Increased feeding on 13C-depleted Zooplankton or increased heterotrophy at the expense of autotrophy can both result in a 13C-depleted coral skeleton. However, this suggestion requires more testing. If our conclusions are substantiated, seasonal skeletal 13C/12C records of corals which change from autotrophy under normal conditions to increased heterotrophy during bloom events may be used as indicators of ocean paleoproductivity at interannual resolution, available from no other source.
Resumo:
The present dataset contain source data for Figure 5b from Schilling et al., 2009. Cell fate decisions are regulated by the coordinated activation of signalling pathways such as the extracellular signal-regulated kinase (ERK) cascade, but contributions of individual kinase isoforms are mostly unknown. The authors combined quantitative data from erythropoietin-induced pathway activation in primary erythroid progenitor (colony-forming unit erythroid stage, CFU-E) cells with mathematical modelling, in order to predict and experimentally confirmed a distributive ERK phosphorylation mechanism in CFU-E cells. The authors found evidences that double-phosphorylated ERK1 attenuates proliferation beyond a certain activation level, whereas activated ERK2 enhances proliferation with saturation kinetics. They show integrated responses of double-phosphorylated ERK1 and ERK2 that were calculated for different Epo concentrations for the original model as well as for models with elevated ERK1 or ERK2 levels.
Resumo:
Ocean acidification (OA) has been found to affect an array of normal physiological processes in mollusks, especially posing a significant threat to the fabrication process of mollusk shell. In the current study, the impact of exposure to elevated pCO2 condition was investigated in mantle tissue of Crassostrea gigas by an integrated metabolomic and proteomic approach. Analysis of metabolome and proteome revealed that elevated pCO2 could affect energy metabolism in oyster C. gigas, marked by differentially altered ATP, succinate, MDH, PEPCK and ALDH levels. Moreover, the up-regulated calponin-2, tropomyosins and myosin light chains indicated that elevated pCO2 probably caused disturbances in cytoskeleton structure in mantle tissue of oyster C. gigas. This work demonstrated that a combination of proteomics and metabolomics could provide important insights into the effects of OA at molecular levels.
Resumo:
This paper presents an analysis of the fault tolerance achieved by an autonomous, fully embedded evolvable hardware system, which uses a combination of partial dynamic reconfiguration and an evolutionary algorithm (EA). It demonstrates that the system may self-recover from both transient and cumulative permanent faults. This self-adaptive system, based on a 2D array of 16 (4×4) Processing Elements (PEs), is tested with an image filtering application. Results show that it may properly recover from faults in up to 3 PEs, that is, more than 18% cumulative permanent faults. Two fault models are used for testing purposes, at PE and CLB levels. Two self-healing strategies are also introduced, depending on whether fault diagnosis is available or not. They are based on scrubbing, fitness evaluation, dynamic partial reconfiguration and in-system evolutionary adaptation. Since most of these adaptability features are already available on the system for its normal operation, resource cost for self-healing is very low (only some code additions in the internal microprocessor core)