970 resultados para niche partitioning
Resumo:
A recent study of a pair of sympatric species of cichlids in Lake Apoyo in Nicaragua is viewed as providing probably one of the most convincing examples of sympatric speciation to date. Here, we describe and study a stochastic, individual-based, explicit genetic model tailored for this cichlid system. Our results show that relatively rapid (<20,000 generations) colonization of a new ecological niche and (sympatric or parapatric) speciation via local adaptation and divergence in habitat and mating preferences are theoretically plausible if: (i) the number of loci underlying the traits controlling local adaptation, and habitat and mating preferences is small; (ii) the strength of selection for local adaptation is intermediate; (iii) the carrying capacity of the population is intermediate; and (iv) the effects of the loci influencing nonrandom mating are strong. We discuss patterns and timescales of ecological speciation identified by our model, and we highlight important parameters and features that need to be studied empirically to provide information that can be used to improve the biological realism and power of mathematical models of ecological speciation.
Integrative analyses of speciation and divergence in Psammodromus hispanicus (Squamata: Lacertidae).
Resumo:
BackgroundGenetic, phenotypic and ecological divergence within a lineage is the result of past and ongoing evolutionary processes, which lead ultimately to diversification and speciation. Integrative analyses allow linking diversification to geological, climatic, and ecological events, and thus disentangling the relative importance of different evolutionary drivers in generating and maintaining current species richness.ResultsHere, we use phylogenetic, phenotypic, geographic, and environmental data to investigate diversification in the Spanish sand racer (Psammodromus hispanicus). Phylogenetic, molecular clock dating, and phenotypic analyses show that P. hispanicus consists of three lineages. One lineage from Western Spain diverged 8.3 (2.9-14.7) Mya from the ancestor of Psammodromus hispanicus edwardsianus and P. hispanicus hispanicus Central lineage. The latter diverged 4.8 (1.5-8.7) Mya. Molecular clock dating, together with population genetic analyses, indicate that the three lineages experienced northward range expansions from southern Iberian refugia during Pleistocene glacial periods. Ecological niche modelling shows that suitable habitat of the Western lineage and P. h. edwardsianus overlap over vast areas, but that a barrier may hinder dispersal and genetic mixing of populations of both lineages. P. h. hispanicus Central lineage inhabits an ecological niche that overlaps marginally with the other two lineages.ConclusionsOur results provide evidence for divergence in allopatry and niche conservatism between the Western lineage and the ancestor of P. h. edwardsianus and P. h. hispanicus Central lineage, whereas they suggest that niche divergence is involved in the origin of the latter two lineages. Both processes were temporally separated and may be responsible for the here documented genetic and phenotypic diversity of P. hispanicus. The temporal pattern is in line with those proposed for other animal lineages. It suggests that geographic isolation and vicariance played an important role in the early diversification of the group, and that lineage diversification was further amplified through ecological divergence.
Resumo:
Hsp70s are conserved molecular chaperones that can prevent protein aggregation, actively unfold, solubilize aggregates, pull translocating proteins across membranes and remodel native proteins complexes. Disparate mechanisms have been proposed for the various modes of Hsp70 action: passive prevention of aggregation by kinetic partitioning, peptide-bond isomerase, Brownian ratcheting or active power-stroke pulling. Recently, we put forward a unifying mechanism named 'entropic pulling', which proposed that Hsp70 uses the energy of ATP hydrolysis to recruit a force of entropic origin to locally unfold aggregates or pull proteins across membranes. The entropic pulling mechanism reproduces the expected phenomenology that inspired the other disparate mechanisms and is, moreover, simple.
Resumo:
Myc activity is emerging as a key element in acquisition and maintenance of stem cell properties. We have previously shown that c-Myc deficiency results in accumulation of defective hematopoietic stem cells (HSCs) due to niche-dependent differentiation defects. Here we report that immature HSCs coexpress c-myc and N-myc mRNA at similar levels. Although conditional deletion of N-myc in the bone marrow does not affect hematopoiesis, combined deficiency of c-Myc and N-Myc (dKO) results in pancytopenia and rapid lethality. Interestingly, proliferation of HSCs depends on both myc genes during homeostasis, but is c-Myc/N-Myc independent during bone marrow repair after injury. Strikingly, while most dKO hematopoietic cells undergo apoptosis, only self-renewing HSCs accumulate the cytotoxic molecule Granzyme B, normally employed by the innate immune system, thereby revealing an unexpected mechanism of stem cell apoptosis. Collectively, Myc activity (c-Myc and N-Myc) controls crucial aspects of HSC function including proliferation, differentiation, and survival.
Resumo:
M. myotis and M. blythii are two sibling species of bats that live sympatrically over wide areas of the Western Palearctic region, and which often coexist intimately in their nursery roosts. According to the principle of <<limiting similarity>> this cohabitation should imply an interspecific ecological differentiation. The hypothesis of a niche separation at the trophic level is tested here. The fecal analysis of 300 droppings collected from a zone of sympatry shows a clear interspecific differentiation in diets : M. myotis eats mostly Carabidae (Coleoptera), whereas M. blythii captures essentially Tettigoniidae, Gryllidae and Acrididae (Orthoptera). Because they consume exclusively terrestrial arthropods, M. myotis and M. blythii are typical ground and/or grass gleaning bats. However, despite their narrow niches they are probably not specialized in the predation of only some definite categories of prey. The narrow diets probably reflect the high specialization of their modes of resource exploitation: M. myotis and M. blythii prey upon ground arthropods and they are likely to select for different foraging;g habitats. M. myotis probably prefers wooded feeding grounds (Carabidae) whereas M. blythii exploits herbaceous habitats (Orthoptera). The strong trophic segregation observed in sympatry between M. myotis and M. blythii shows that the interspecific competition is distinctly much weaker than the intraspecific one. This would explain the stable, intimate co-existence of these two virtual competitors.
Resumo:
Is species diversification driven by neutral- or niche-based processes? Butterflies of the Lycaenidae family have developed mutualistic interactions with ants. This biotic requirement increased the spatial fragmentation of populations of lower effective population size (Ne) compared with autonomous species. The nearly neutral theory predicts that species with smaller Ne should fix more mutations because of the increased strength of drift. Taking into account the phylogenetic relatedness among species, this study shows that species with a stronger dependence on ants displayed more intra-specific Single Nucleotide Polymorphisms compared with species with low or no myrmecophily. This phenomenon can cause more pronounced genetic differentiation between populations and could ultimately promote speciation in a similar manner as on physical islands. The large species diversity observed in this family could be the consequence of this neutral process enhancing the diversification of lineages.
Resumo:
The hematopoietic stem cell (HSC) is probably the best characterized somatic stem cell and is still the only one regularly used in clinical practice. Nevertheless, expansion of HSCs in vitro has been surprisingly unsuccessful, limiting their full therapeutic potential. During homeostasis, the vast majority of HSCs are found in the bone marrow (BM) localized to specific microenvironments called stem cell "niches." Over the last few years our knowledge of cellular niche components and the signaling molecules that coordinate the crosstalk between HSCs and niche cells has dramatically increased. Here we review the two main niche types found in the BM: the endosteal and the vascular niches, and provide an overview of the different signaling and cell adhesion molecules that form the HSC-niche synapse. Signals from BM niches not only control HSC dormancy, but also regulate the balance between self-renewal and differentiation. In the future, successful expansion of HSCs for therapeutic use will require three-dimensional reconstruction of a stem cell-niche unit.
Resumo:
Growth and development variables and dry matter characteristics were studied for cultivar Snowden of potato (Solanum tuberosum L.) to evaluate nitrogen and plant density influence. Disregarding ending of season plant stress, the average number of actives haulms per plant was five and it was not affected by plant spacing. However, seasonal and final number of active haulms per plant were increased at 200 kg/ha of nitrogen. Maximum stem elongation was reached quickly with double density and had the tendency to keep constant at the highest and lowest nitrogen levels after 70 days after planting. Specific stem mass defined as mass per unit stem length was established as an indirect measure of stem thickness and load capacity. Specific leaf mass position in plant was higher at upper stem leaves, increased as plant density increased and did not vary markedly over time throughout the season. The rate of leaf appearance increased drastically due to more branching caused by high nitrogen level, and increased above ground dry matter per plant. Canopy growth and development influenced main tuber yield components. The number of active tubers per haulm decreased after 60 days after planting showing that tuberization is reversible. Tuber growth functions were established allowing the estimate of dry biomass partitioning coefficients for each plant organ.
Resumo:
THESIS SUMMARY : Metastasis is a multistep process involving tumour cell-autonomous features, the host tissue stroma of the primary tumour, the blood or lymphatic system as well as a receptive target organ. Most studies on factors influencing metastasis have concentrated on the characteristics of the disseminating tumour cell and on early steps of metastasis including invasion and angiogenesis. Although these steps are necessary for tumour cells to disseminate, it is the challenges encountered in the later steps of metastasis -survival while in the circulation and engraftment and outgrowth in the target organ -that account for the inefficiency of circulating tumour cells in establishing secondary lesions. Full understanding of the metastatic process therefore requires elucidation of the mechanisms that regulate these late steps, and in particular that determine what makes any given tissue permissive for metastatic tumour growth. To address this issue, we assessed the mechanisms whereby a physiological situation -pregnancy -can alter host permissiveness toward metastasis. We show that pregnant NOD/SCID mice -injected intravenously with tumour cells -develop more metastases than their non-pregnant counterparts irrespective of the tumour cell type. There was no direct effect of pregnancy-related circulating factors on tumour cell proliferation, and subcutaneous tumour growth does not vary between pregnant and nonpregnant animals. However, decreased elimination of tumour cells from the lung microvasculature was observed in pregnant mice, prompting us to assess whether pregnancy-related adaptations in innate immunity could account for this differential clearing. We found that natural killer (NK) cell fractions are decreased in blood and spleen of pregnant mice and that NK cell cytotoxicity is impaired, as reported previously. The use of NK-deficient mice or tumour cell lines resistant to NK killing abrogates the difference in metastasis load between pregnant and virgin mice. CD11 b+ Gr-1+ myeloid-derived suppressor cells (MDSC) have previously been shown to accumulate in tumour-bearing mice and to down-modulate NK activity. Accordingly, we show an increase in MDSC in pregnant mouse blood, spleen, lungs and liver. Depletion of MDSC prior to tumour cell injection decreased metastasis load in pregnant NOD/SCID mice but had no effect on virgin mice. Similarly, adoptive transfer of MDSC extracted from pregnant mice into virgin mice lead to increased metastasis take. In parallel, we investigated whether the lung and liver microenvironments are modified during pregnancy thereby providing a more "permissive soil" for the establishment of metastases. A comparative analysis of microarray data of pregnant mouse lungs and liver with "premetastatic niche" gene expression profiles of these organs shows that similar mechanisms could mediate an increase in lung and liver metastasis in pregnant mice and in mice harbouring an aggressive primary tumour. Several commonly up-regulated genes point towards the recruitment of myeloid cells, consistent with the accumulation of MDSC observed in pregnant mice. MDSC have never been evoked in the context of pregnancy before. Although the role of MDSC in pregnancy requires further investigation we suggest that MDSC accumulation constitutes an important and hitherto unrecognised common denominator of maternal immune tolerance and cancer immune escape. RESUME DE THESE : La métastatisation est un processus en plusieurs étapes qui implique des compétences particulières chez les cellules tumorales, le stroma de la tumeur primaire, les vaisseaux sanguins ou lymphatiques ainsi qu'un organe cible' réceptif. Jusqu'alors, la recherche s'est principalement intéressée aux facteurs qui influencent les étapes précoces de la métastatisation donc aux caractéristiques de la cellule métastatique, et aux processus tels que l'invasion et l'angiogenèse, tandis que peu d'études traitent des étapes tardives tel que la survie dans la circulation sanguine et l'établissement d'une lésion dans l'organe cible. En particulier, l'élucidation des facteurs qui déterminent la permissivité d'un tissu à la greffe de cellules disséminantes est indispensable à la compréhension de ce processus complexe qu'est la métastatisation. Nous proposons ici un modèle de souris récapitulant les étapes tardives de la métastatisation dans un contexte d'une permissivité accrue aux métastases chez la souris gravide, et nous évaluons les mécanismes impliqués. Les souris gestantes développent plus de métastases après l'injection intraveineuse de cellules tumorales, indépendamment du type de tumeur d'origine. Les taux élevés d'hormones et de facteurs de croissance chez la souris gravide n'inflúencent pas la prolifération des cellules tumorales et fa croissance de tumeurs sous-cutanées n'est pas non plus accélérée par la gestation. En revanche, une fois injectées, les cellules tumorales sont éliminées ` moins rapidement des vaisseaux pulmonaires chez la souris gravide que chez les contrôles. Cette observation est compatible avec un effet de la gestation sur l'immunité innée et nous avons mis en évidence une diminution des proportions de cellules NK (natural killer) dans le sang et la rate en particulier, ainsi qu'une cytotoxicité moindre envers des cellules tumorales. En utilisant des souris déficientes en cellules NK ou en injectant des cellules résistantes à l'attaqué par des cellules NK, la différence entre souris gestantes et non-gestantes disparaît. Il a été démontré chez des souris porteuses de tumeurs, que l'accumulation de cellules immunosuppressives de la lignée myélo-monocytaire (ou MDSC pour myeloid-derived suppressor tells) pouvait être responsable d'une inhibition de l'activité de cellules NK. Des nombres augmentés de ces cellules, caractérisées par les marqueurs de surface CD11b et Gr-1, ont été trouvés dans le sang, la rate, les poumons et le foie de souris gravides. Leur rôle dans la métastatisation est démontré par le fait que leur dépletion diminue le nombre de lésions secondaires chez la souris gestante, tandis que leur transfert dans des souris non-gestantes augmente le taux de métastases. L'utilisation de puces à ADN sur les foies et poumons de souris gravides a permis de mettre en évidence des différences d'expression génique proches de celles observées dans l'établissement de niches pré-métastatiques. Ceci suggère que des mécanismes similaires pourraient être responsables d'une permissivité accrue aux métastases chez la souris gravide et chez la souris porteuse d'une tumeur primaire agressive, telle que, en particulier, l'accumulation de cellules immunosuppressives dans les organes cibles. C'est la première fois que l'accumulation de MDSC est évoquée chez la souris gravide et nous proposons ici que celles-ci jouent un rôle dans la tolérance immunitaire envers le foetus et sont responsables de l'échappement de cellules tumorales injectées à la surveillance immunitaire par des cellules NK.
Resumo:
Partitioning of proteins in cholesterol and sphingolipid enriched plasma membrane microdomains, called lipid rafts, is critical for many signal transduction and protein sorting events. Although raft partitioning of many signaling molecules remains to be determined, glycosylphosphatidyl-inositol (GPI)-anchored proteins possess high affinity for lipid rafts and are currently exploited as markers to investigate fundamental mechanisms in protein sorting and signal transduction events. In this study, we demonstrate that two recombinant GPI-anchored green fluorescent proteins (GFP-GPIs) that differ in their GPI signal sequence confer distinct localization in plasma membrane microdomains. GFP fused to the GPI signal of the decay accelerating factor GFP-GPI(DAF) partitioned exclusively in lipid rafts, whereas GFP fused to the GPI signal of TRAIL-R3, GFP-GPI(TRAIL-R3), associated only minimally with microdomains. In addition, we investigated the unique ability of purified GFP-GPIs to insert into membrane microdomains of primary lymphocytes. This cell surface painting allows rapid, stable, and functional association of the GPI-anchored proteins with the target cell plasma membrane. The distinct membrane localization of the two GFP-GPIs was observed irrespective of whether the GPI-anchored molecules were painted or transfected. Furthermore, we show that painted GFP-GPI(DAF) was totally dependent on the GPI anchor and that the membrane insertion was increased by the addition of raft-associated lipids such as cholesterol, sphingomyelin, and dipalmitoyl-phosphatidylethanolamine. Thus, this study provides evidence that different GPI signal sequences lead to distinct membrane microdomain localization and that painted GFP-GPI(DAF) serves as an excellent fluorescent marker for lipid rafts in live cells.
Resumo:
(1) The common shrew Sorex araneus and Millet's shrew S. coronatusare sibling species.They are morphologically and genetically very similar but do not hybridize.Their parapatric distribution throughout south-western Europe, with a few narrow zones of distributional overlap, suggests that they are in competitive parapatry. (2) Two of these contact zones were studied; there was evidence of coexistence over periods of 2 years as well as habitat segregation. In both zones, the species segregated on litter thickness and humidity variables. (3) A simple analysis of spatial distribution showed that habitats visible in the field corresponded to the habitats selected by the species. Habitat selection was found throughout the annual life-cycle of the shrews. (4) In one contact zone, a removal experiment was performed to test whether habitat segregation is induced by interspecific interactions. The experiment showed that the species select habitats differentially when both are present and abandon habitat selection when their competitor removed. (5)These results confirm the role of resource partitioning in promoting narrow ranges of distributional overlap between such parapatric species and qualitatively support the prediction of habitat selection theory that, in a two-species system, coexistence may be achieved by differential habitat selection to avoid competition. The results also support the view that the common shrew and Millet's shrew are in competitive parapatry.
Resumo:
Introduction Societies of ants, bees, wasps and termites dominate many terrestrial ecosystems (Wilson 1971). Their evolutionary and ecological success is based upon the regulation of internal conflicts (e.g. Ratnieks et al. 2006), control of diseases (e.g. Schmid-Hempel 1998) and individual skills and collective intelligence in resource acquisition, nest building and defence (e.g. Camazine 2001). Individuals in social species can pass on their genes not only directly trough their own offspring, but also indirectly by favouring the reproduction of relatives. The inclusive fitness theory of Hamilton (1963; 1964) provides a powerful explanation for the evolution of reproductive altruism and cooperation in groups with related individuals. The same theory also led to the realization that insect societies are subject to internal conflicts over reproduction. Relatedness of less-than-one is not sufficient to eliminate all incentive for individual selfishness. This would indeed require a relatedness of one, as found among cells of an organism (Hardin 1968; Keller 1999). The challenge for evolutionary biology is to understand how groups can prevent or reduce the selfish exploitation of resources by group members, and how societies with low relatedness are maintained. In social insects the evolutionary shift from single- to multiple queens colonies modified the relatedness structure, the dispersal, and the mode of colony founding (e.g. (Crozier & Pamilo 1996). In ants, the most common, and presumably ancestral mode of reproduction is the emission of winged males and females, which found a new colony independently after mating and dispersal flights (Hölldobler & Wilson 1990). The alternative reproductive tactic for ant queens in multiple-queen colonies (polygyne) is to seek to be re-accepted in their natal colonies, where they may remain as additional reproductives or subsequently disperse on foot with part of the colony (budding) (Bourke & Franks 1995; Crozier & Pamilo 1996; Hölldobler & Wilson 1990). Such ant colonies can contain up to several hundred reproductive queens with an even more numerous workforce (Cherix 1980; Cherix 1983). As a consequence in polygynous ants the relatedness among nestmates is very low, and workers raise brood of queens to which they are only distantly related (Crozier & Pamilo 1996; Queller & Strassmann 1998). Therefore workers could increase their inclusive fitness by preferentially caring for their closest relatives and discriminate against less related or foreign individuals (Keller 1997; Queller & Strassmann 2002; Tarpy et al. 2004). However, the bulk of the evidence suggests that social insects do not behave nepotistically, probably because of the costs entailed by decreased colony efficiency or discrimination errors (Keller 1997). Recently, the consensus that nepotistic behaviour does not occur in insect colonies was challenged by a study in the ant Formica fusca (Hannonen & Sundström 2003b) showing that the reproductive share of queens more closely related to workers increases during brood development. However, this pattern can be explained either by nepotism with workers preferentially rearing the brood of more closely related queens or intrinsic differences in the viability of eggs laid by queens. In the first chapter, we designed an experiment to disentangle nepotism and differences in brood viability. We tested if workers prefer to rear their kin when given the choice between highly related and unrelated brood in the ant F. exsecta. We also looked for differences in egg viability among queens and simulated if such differences in egg viability may mistakenly lead to the conclusion that workers behave nepotistically. The acceptance of queens in polygnous ants raises the question whether the varying degree of relatedness affects their share in reproduction. In such colonies workers should favour nestmate queens over foreign queens. Numerous studies have investigated reproductive skew and partitioning of reproduction among queens (Bourke et al. 1997; Fournier et al. 2004; Fournier & Keller 2001; Hammond et al. 2006; Hannonen & Sundström 2003a; Heinze et al. 2001; Kümmerli & Keller 2007; Langer et al. 2004; Pamilo & Seppä 1994; Ross 1988; Ross 1993; Rüppell et al. 2002), yet almost no information is available on whether differences among queens in their relatedness to other colony members affects their share in reproduction. Such data are necessary to compare the relative reproductive success of dispersing and non-dispersing individuals. Moreover, information on whether there is a difference in reproductive success between resident and dispersing queens is also important for our understanding of the genetic structure of ant colonies and the dynamics of within group conflicts. In chapter two, we created single-queen colonies and then introduced a foreign queens originating from another colony kept under similar conditions in order to estimate the rate of queen acceptance into foreign established colonies, and to quantify the reproductive share of resident and introduced queens. An increasing number of studies have investigated the discrimination ability between ant workers (e.g. Holzer et al. 2006; Pedersen et al. 2006), but few have addressed the recognition and discrimination behaviour of workers towards reproductive individuals entering colonies (Bennett 1988; Brown et al. 2003; Evans 1996; Fortelius et al. 1993; Kikuchi et al. 2007; Rosengren & Pamilo 1986; Stuart et al. 1993; Sundström 1997; Vásquez & Silverman in press). These studies are important, because accepting new queens will generally have a large impact on colony kin structure and inclusive fitness of workers (Heinze & Keller 2000). In chapter three, we examined whether resident workers reject young foreign queens that enter into their nest. We introduced mated queens into their natal nest, a foreign-female producing nest, or a foreign male-producing nest and measured their survival. In addition, we also introduced young virgin and mated queens into their natal nest to examine whether the mating status of the queens influences their survival and acceptance by workers. On top of polgyny, some ant species have evolved an extraordinary social organization called 'unicoloniality' (Hölldobler & Wilson 1977; Pedersen et al. 2006). In unicolonial ants, intercolony borders are absent and workers and queens mix among the physically separated nests, such that nests form one large supercolony. Super-colonies can become very large, so that direct cooperative interactions are impossible between individuals of distant nests. Unicoloniality is an evolutionary paradox and a potential problem for kin selection theory because the mixing of queens and workers between nests leads to extremely low relatedness among nestmates (Bourke & Franks 1995; Crozier & Pamilo 1996; Keller 1995). A better understanding of the evolution and maintenance of unicoloniality requests detailed information on the discrimination behavior, dispersal, population structure, and the scale of competition. Cryptic genetic population structure may provide important information on the relevant scale to be considered when measuring relatedness and the role of kin selection. Theoretical studies have shown that relatedness should be measured at the level of the `economic neighborhood', which is the scale at which intraspecific competition generally takes place (Griffin & West 2002; Kelly 1994; Queller 1994; Taylor 1992). In chapter four, we conducted alarge-scale study to determine whether the unicolonial ant Formica paralugubris forms populations that are organised in discrete supercolonies or whether there is a continuous gradation in the level of aggression that may correlate with genetic isolation by distance and/or spatial distance between nests. In chapter five, we investigated the fine-scale population structure in three populations of F. paralugubris. We have developed mitochondria) markers, which together with the nuclear markers allowed us to detect cryptic genetic clusters of nests, to obtain more precise information on the genetic differentiation within populations, and to separate male and female gene flow. These new data provide important information on the scale to be considered when measuring relatedness in native unicolonial populations.
Resumo:
The end-Permian mass extinction removed more than 80% of marine genera. Ammonoid cephalopods were among the organisms most affected by this crisis. The analysis of a global diversity data set of ammonoid genera covering about 106 million years centered on the Permian-Triassic boundary (PTB) shows that Triassic ammonoids actually reached levels of diversity higher than in the Permian less than 2 million years after the PTB. The data favor a hierarchical rather than logistic model of diversification coupled with a niche incumbency hypothesis. This explosive and nondelayed diversification contrasts with the slow and delayed character of the Triassic biotic recovery as currently illustrated for other, mainly benthic groups such as bivalves and gastropods.
Resumo:
To remove these pollutants from groundwater, different technologies can be used. Currently, the Environmental Protection Agency (EPA) considers ion exchange, reverse osmosis and reverse electrodialysis to be effective methods for the decrease of their concentrations, below their limit in drinking water. These technologies have some drawbacks, such as low selectivity towards the target pollutant, high energy or chemicals requirements, and the generation of waste brine (pollutants are separated from water, not treated), which require an additional treatment. Bio Electro Chemical Systems (BES) could fill this niche
Resumo:
The IncP alpha promiscuous plasmid (R18, R68, RK2, RP1 and RP4) comprises 60,099 bp of nucleotide sequence, encoding at least 74 genes. About 40 kb of the genome, designated the IncP core and including all essential replication and transfer functions, can be aligned with equivalent sequences in the IncP beta plasmid R751. The compiled IncP alpha sequence revealed several previously unidentified reading frames that are potential genes. IncP alpha plasmids carry genetic information very efficiently: the coding sequences of the genes are closely packed but rarely overlap, and occupy almost 86% of the genome's nucleotide sequence. All of the 74 genes should be expressed, although there is as yet experimental evidence for expression of only 60 of them. Six examples of tandem-in-frame initiation sites specifying two gene products each are known. Two overlapping gene arrangements occupy different reading frames of the same region. Intergenic regions include most of the 25 promoters; transcripts are usually polycistronic. Translation of most of the open reading frames seems to be initiated independently, each from its own ribosomal binding and initiation site, although, a few cases of coupled translation have been reported. The most frequently used initiation codon is AUG but translation for a few open reading frames begins at GUG or UUG. The most common stop-codon is UGA followed by UAA and then UAG. Regulatory circuits are complex and largely dependent on two components of the central control operon. KorA and KorB are transcriptional repressors controlling at least seven operons. KorA and KorB act synergistically in several cases by recognizing and binding to conserved nucleotide sequences. Twelve KorB binding sites were found around the IncP alpha sequence and these are conserved in R751 (IncP beta) with respect to both sequence and location. Replication of IncP alpha plasmids requires oriV and the plasmid-encoded initiator protein TrfA in combination with the host-encoded replication machinery. Conjugative plasmid transfer depends on two separate regions occupying about half of the genome. The primary segregational stability system designated Par/Mrs consists of a putative site-specific recombinase, a possible partitioning apparatus and a post-segregational lethality mechanism, all encoded in two divergent operons. Proteins related to the products of F sop and P1 par partitioning genes are separately encoded in the central control operon.