839 resultados para next generation sequencing


Relevância:

80.00% 80.00%

Publicador:

Resumo:

A novel azo dye containing isoxazole ring and beta-diketone derivative (TIAD) and its two nickel (II) complexes (Ni (II)-ETIAD and Ni (II)-HTIAD) were synthesized in order to obtain a blue-violet light absorption and better thermal stability as a promising organic storage material for next generation of high density digital versatile disc-recordable (HD-DVD-R) systems that uses a high numerical aperture of 0.85 at 405 nm wavelength. Their structures were confirmed on the basis of elemental analysis, MS, FT-IR, UV-Vis and magnetic data. Their solubility in 2,2,3,3-tetrafluoro-1-propanol (TFP) and absorption properties of thin film were measured. The difference of absorption maximum from the complexes to their ligands was discussed. In addition, the TG analysis of the complexes was also determined, and their thermal stability was evaluated. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Thin films of four nickel(II) and copper(II) hydrazone complexes, which will hopefully be used as recording layers for the next-generation of high-density recordable disks, were prepared by using the spin-coating method. Absorption spectra of the thin films on K9 optical glass substrates in the 300-700 nm wavelength region were measured. Optical constants (complex refractive indices N) and thickness d of the thin films prepared on single-crystal silicon substrates in the 275-675 nm wavelength region were investigated on a rotating analyzer-polarizer scanning ellipsometer by fitting the measured ellipsometric angles (Psi(lambda) and Delta(lambda)) with a 3-layer model (Si/dye film/air). The dielectric functions epsilon and absorption coefficients alpha as a function of the wavelength were then calculated. Additionally, a design to achieve high reflectivity and optimum dye film thickness with an appropriate reflective layer was performed with the Film Wizard software using a multilayered model (PC substrate/reflective layer/dye film/air) at 405 nm wavelength.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

合成了2-(2-氨基-6-乙氧基苯并噻唑基偶氮)-5-(N,N-二乙基氨基)三氟甲基磺酰苯胺偶氮染料(EBTDATFS)及其与乙酸镍、乙酸钴、乙酸铜、乙酸锌等金属盐鏊合的金属鏊合物。通过红外光谱、紫外-可见吸收光谱和MALDI质谱等对染料及其金属鏊合物进行了结构表征;使用旋涂方法在K9玻璃和抛光的单晶硅基片上制备薄膜;研究了镍金属鏊合物的热学性能;使用椭偏仪研究了Ni和Zn鏊合物的光学常数。结果表明:4种金属鏊合物薄膜最大吸收光谱为621-629nm,且长波边吸收峰陡峭;TGA-DSC测试结果表明镍金属鏊

Relevância:

80.00% 80.00%

Publicador:

Resumo:

[EN]The purpose of this project is to study and analyse signals of digital television, provided for mobile services, by using LDM technology. In order to achieve this, it will be needed the use of different transmission configurations (modulation, code rate…) suitable for this type of service, as well as propagation channels showing movement situations, such as pedestrian or mobile. This project comes as a response of recent research in LDM technology, which has been proposed as a Physical Layer technology to the ATSC 3.0 Next Generation Digital TV standard.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

ZnO具有优良的综合性能使其成为极有前途的下一代光电材料,水热法是一种重要的生长ZnO晶体的方法。本文对水热法生长的面积约150mm^2的ZnO晶体进行了报道,研究了晶体不同方向的生长速度、形貌特征和光学性能。X射线摇摆曲线表明晶体的质量较好。对于光学性质的分析表明晶体生长时加入H2O2能显著提高晶体的质量。494nm附近的发光带可能与氧空位有关。520nm的发光可能与Na或者Si所形成的杂质能级跃迁有关。

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A Mata Atlântica (MA) está entre as regiões com maior biodiversidade e mais ameaçadas do planeta. Esforços em diversas áreas do conhecimento têm sido feitos para que se tenha uma estimativa mais refinada da diversidade existente e sua organização ao longo do bioma. O crescente número de estudos que buscam reconstituir a história da diversificação da MA apontam para um cenário espacial e temporal complexo, havendo ainda uma lacuna no conhecimento dos processos em pequena escala. Vertebrados em miniatura têm se mostrado uma boa ferramenta para estudos de processos evolutivos em pequena escala. Assim, o gênero Euparkerella, endêmico de uma pequena região da MA dos Estados do Rio de Janeiro (RJ) e Espírito Santo (ES), foi escolhido como modelo para este estudo. No primeiro capítulo buscou-se descrever a diversidade existente dentro do gênero a partir de uma filogenia molecular. Para isso, utilizaram-se métodos bayesianos para gerar genealogias de genes e de espécies a partir de um fragmento de gene mitocondrial e quatro fragmentos de genes nucleares. Os resultados obtidos apontaram para uma grande diversidade críptica no gênero. Foram identificadas seis unidades evolutivas significativamente divergentes para o RJ: duas em Euparkerella cochranae, três em Euparkerella brasiliensis, e Euparkerella sp.. A espécie mais basal recuperada foi Euparkerella robusta, do ES, e estimou-se o início da diversificação do gênero para o final do Mioceno. O segundo capítulo descreve onze marcadores de microssatélites desenvolvidos para Euparkerella brasiliensis através do método de pirosequenciamento de nova geração 454. No terceiro capítulo estudou-se apenas uma unidade evolutiva, Euparkerella brasiliensis da área dos Três Picos/ RJ. A partir de marcadores de evolução rápida (microssatélites) e lenta (sequências de DNA) buscou-se compreender a estrutura e a dinâmica populacional desta unidade evolutiva em uma área bastante pequena (aprox. 20 km) sob influência de um gradiente ambiental altitudinal (40 m 1000 m). Foram identificadas, a partir dos microssatélites, duas subpopulações geneticamente distintas nas bordas do gradiente. O fluxo gênico se deu predominantemente das bordas para a zona de contato, onde foi observado o maior efetivo populacional. Tais resultados indicam que pequenas variações ambientais podem atuar no isolamento populacional em Euparkerella e corroboram o padrão de formas microendêmicas identificadas na filogenia. Futuros estudos devem ser feitos no sentido de buscar caracterizar morfologicamente as unidades evolutivas aqui identificadas; preencher as lacunas amostrais, especialmente no ES; e descrever os processos que atuam em pequena escala nas zonas de contato entre as unidades evolutivas e fatores limitantes a distribuição das mesmas.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper relies on the concept of next generation matrix defined ad hoc for a new proposed extended SEIR model referred to as SI(n)R-model to study its stability. The model includes n successive stages of infectious subpopulations, each one acting at the exposed subpopulation of the next infectious stage in a cascade global disposal where each infectious population acts as the exposed subpopulation of the next infectious stage. The model also has internal delays which characterize the time intervals of the coupling of the susceptible dynamics with the infectious populations of the various cascade infectious stages. Since the susceptible subpopulation is common, and then unique, to all the infectious stages, its coupled dynamic action on each of those stages is modeled with an increasing delay as the infectious stage index increases from 1 to n. The physical interpretation of the model is that the dynamics of the disease exhibits different stages in which the infectivity and the mortality rates vary as the individual numbers go through the process of recovery, each stage with a characteristic average time.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

4 bps/Hz 40 Gb/s carrierless amplitude and phase (CAP) modulation is investigated for next-generation datacommunication links. The 40 Gb/s link achieves double the length of a conventional NRZ scheme, despite using a low-bandwidth source. © 2011 Optical Society of America.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Superconductors are known for the ability to trap magnetic field. A thermally actuated magnetization (TAM) flux pump is a system that utilizes the thermal material to generate multiple small magnetic pulses resulting in a high magnetization accumulated in the superconductor. Ferrites are a good thermal material candidate for the future TAM flux pumps because the relative permeability of ferrite changes significantly with temperature, particularly around the Curie temperature. Several soft ferrites have been specially synthesized to reduce the cost and improve the efficiency of the TAM flux pump. Various ferrite compositions have been tested under a temperature variation ranging from 77K to 300K. The experimental results of the synthesized soft ferrites-Cu 0.3 Zn 0.7Ti 0.04Fe 1.96O 4, including the Curie temperature, magnetic relative permeability and the volume magnetization (emu/cm3), are presented in this paper. The results are compared with original thermal material, gadolinium, used in the TAM flux pump system.-Cu 0.3 Zn 0.7Ti 0.04 Fe 1.96O 4 holds superior characteristics and is believed to be a suitable material for next generation TAM flux pump. © 2011 IEEE.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The quest for materials capable of realizing the next generation of electronic and photonic devices continues to fuel research on the electronic, optical and vibrational properties of graphene. Few-layer graphene (FLG) flakes with less than ten layers each show a distinctive band structure. Thus, there is an increasing interest in the physics and applications of FLGs. Raman spectroscopy is one of the most useful and versatile tools to probe graphene samples. Here, we uncover the interlayer shear mode of FLGs, ranging from bilayer graphene (BLG) to bulk graphite, and suggest that the corresponding Raman peak measures the interlayer coupling. This peak scales from ∼43cm -1 in bulk graphite to ∼31cm -1 in BLG. Its low energy makes it sensitive to near-Dirac point quasiparticles. Similar shear modes are expected in all layered materials, providing a direct probe of interlayer interactions. © 2012 Macmillan Publishers Limited. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Recent development of solution processable organic semiconductors delineates the emergence of a new generation of air-stable, high performance p- and n-type materials. This makes it indeed possible for printed organic complementary circuits (CMOS) to be used in real applications. The main technical bottleneck for organic CMOS to be adopted as the next generation organic integrated circuit is how to deposit and pattern both p- and n-type semiconductor materials with high resolutions at the same time. It represents a significant technical challenge, especially if it can be done for multiple layers without mask alignment. In this paper, we propose a one-step self-aligned fabrication process which allows the deposition and high resolution patterning of functional layers for both p- and n-channel thin film transistors (TFTs) simultaneously. All the dimensional information of the device components is featured on a single imprinting stamp, and the TFT-channel geometry, electrodes with different work functions, p- and n-type semiconductors and effective gate dimensions can all be accurately defined by one-step imprinting and the subsequent pattern transfer process. As an example, we have demonstrated an organic complementary inverter fabricated by 3D imprinting in combination with inkjet printing and the measured electrical characteristics have validated the feasibility of the novel technique. © 2012 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

High-resolution γ-ray spectroscopy is essential to fully exploit the unique, high-quality beams available at the next generation of radioactive ion beam facilities such as the TRIUMF isotope separator and accelerator (ISAC). The 8π spectrometer, which consists of 20 Compton-suppressed HPGe detectors, has recently been reconfigured for a vigorous research programme in weak interaction and nuclear structure physics. With the addition of a variety of ancillary detectors it has become the world's most powerful device dedicated to β-decay studies. This paper provides a brief overview of the apparatus and highlights from recent experiments. © 2005 IOP Publishing Ltd.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Here we present our on-going efforts toward the development of stable ballasted carbon nanotube-based field emitters employing hydrothermally synthesized zinc oxide nanowires and thin film silicon-on-insulator substrates. The semiconducting channel in each controllably limits the emission current thereby preventing detrimental burn-out of individual emitters that occurs due to unavoidable statistical variability in emitter characteristics, particularly in their length. Fabrication details and emitter characterization are discussed in addition to their field emission performance. The development of a beam steerable triode electron emitter formed from hexagonal carbon nanotube arrays with central focusing nanotube electrodes, is also described. Numerical ab-initio simulations are presented to account for the empirical emission characteristics. Our engineered ballasted emitters have shown some of the lowest reported lifetime variations (< 0.7%) with on-times of < 1 ms, making them ideally-suited for next-generation displays, environmental lighting and portable x-rays sources. © 2012 SPIE.