830 resultados para multi-disciplinary design teams
Resumo:
We study the performance of greedy scheduling in multihop wireless networks where the objective is aggregate utility maximization. Following standard approaches, we consider the dual of the original optimization problem. Optimal scheduling requires selecting independent sets of maximum aggregate price, but this problem is known to be NP-hard. We propose and evaluate a simple greedy heuristic. We suggest how the greedy heuristic can be implemented in a distributed manner. We evaluate an analytical bound in detail, for the special case of a line graph and also provide a loose bound on the greedy heuristic for the case of an arbitrary graph.
Resumo:
The QUT Centre for Subtropical Design conducted a design-led interdisciplinary collaborative workshop (charrette) to develop some initial ideas for how innovation in research and practice can be applied to the complex problem of resilient future-focussed urban renewal in Rockhampton’s flood-prone suburbs and core grid. Three creative teams explored a range of scenarios for Rockhampton’s resilience in built form over the longer term. A large number of sketches, drawings and text were produced over two days. This report identifies themes, principles and strategies which emerged from the charrette. Each group proposed multiple guiding principles that fell into three strategic approaches: defend (through construction of a levee); adapt (by designing with flood in mind); retreat (a long term view to relocate populations in flood-prone areas). All three groups identified the importance of design that accommodates art, heritage, recreation, sustainability and tourism, and proposed these as principles to guide future strategies that mediate between Rockhampton’s broader ecological landscape and urban living to accommodate more affordable housing options, demonstrate sustainability and be climate responsive to predicted increased extreme weather events including flooding. The charrette outcomes pave the way to investigate wider issues and solutions to Rockhampton’s resilient future, beyond a levee as an isolated structure.
Resumo:
In this paper a modified Heffron-Phillip's (K-constant) model is derived for the design of power system stabilizers. A knowledge of external system parameters, such as equivalent infinite bus voltage and external impedances or their equivalent estimated values is required for designing a conventional power system stabilizer. In the proposed method, information available at the secondary bus of the step-up transformer is used to set up a modified Heffron-Phillip's (ModHP) model. The PSS design based on this model utilizes signals available within the generating station. The efficacy of the proposed design technique and the performance of the stabilizer has been evaluated over a range of operating and system conditions. The simulation results have shown that the performance of the proposed stabilizer is comparable to that could be obtained by conventional design but without the need for the estimation and computation of external system parameters. The proposed design is thus well suited for practical applications to power system stabilization, including possibly the multi-machine applications where accurate system information is not readily available.
Design and testing of stand-specific bucking instructions for use on modern cut-to-length harvesters
Resumo:
This study addresses three important issues in tree bucking optimization in the context of cut-to-length harvesting. (1) Would the fit between the log demand and log output distributions be better if the price and/or demand matrices controlling the bucking decisions on modern cut-to-length harvesters were adjusted to the unique conditions of each individual stand? (2) In what ways can we generate stand and product specific price and demand matrices? (3) What alternatives do we have to measure the fit between the log demand and log output distributions, and what would be an ideal goodness-of-fit measure? Three iterative search systems were developed for seeking stand-specific price and demand matrix sets: (1) A fuzzy logic control system for calibrating the price matrix of one log product for one stand at a time (the stand-level one-product approach); (2) a genetic algorithm system for adjusting the price matrices of one log product in parallel for several stands (the forest-level one-product approach); and (3) a genetic algorithm system for dividing the overall demand matrix of each of the several log products into stand-specific sub-demands simultaneously for several stands and products (the forest-level multi-product approach). The stem material used for testing the performance of the stand-specific price and demand matrices against that of the reference matrices was comprised of 9 155 Norway spruce (Picea abies (L.) Karst.) sawlog stems gathered by harvesters from 15 mature spruce-dominated stands in southern Finland. The reference price and demand matrices were either direct copies or slightly modified versions of those used by two Finnish sawmilling companies. Two types of stand-specific bucking matrices were compiled for each log product. One was from the harvester-collected stem profiles and the other was from the pre-harvest inventory data. Four goodness-of-fit measures were analyzed for their appropriateness in determining the similarity between the log demand and log output distributions: (1) the apportionment degree (index), (2) the chi-square statistic, (3) Laspeyres quantity index, and (4) the price-weighted apportionment degree. The study confirmed that any improvement in the fit between the log demand and log output distributions can only be realized at the expense of log volumes produced. Stand-level pre-control of price matrices was found to be advantageous, provided the control is done with perfect stem data. Forest-level pre-control of price matrices resulted in no improvement in the cumulative apportionment degree. Cutting stands under the control of stand-specific demand matrices yielded a better total fit between the demand and output matrices at the forest level than was obtained by cutting each stand with non-stand-specific reference matrices. The theoretical and experimental analyses suggest that none of the three alternative goodness-of-fit measures clearly outperforms the traditional apportionment degree measure. Keywords: harvesting, tree bucking optimization, simulation, fuzzy control, genetic algorithms, goodness-of-fit
Resumo:
There is an increased interest on the use of UAVs for environmental research such as tracking bush fires, volcanic eruptions, chemical accidents or pollution sources. The aim of this paper is to describe the theory and results of a bio-inspired plume tracking algorithm. A method for generating sparse plumes in a virtual environment was also developed. Results indicated the ability of the algorithms to track plumes in 2D and 3D. The system has been tested with hardware in the loop (HIL) simulations and in flight using a CO2 gas sensor mounted to a multi-rotor UAV. The UAV is controlled by the plume tracking algorithm running on the ground control station (GCS).
Resumo:
The continuous mutual transfer of knowledge and skills within work teams is increasingly important for organizational practice. According to the situational and experience-based approaches of applied learning research, certain individual and social prerequisites have to be met for successful learning in teams. In a field study at an automobile production site, it was investigated which personal characteristics of multipliers and which characteristics of teams are related to the performance of multipliers in 31 teams with 291 coworkers. Using multi-level analyses (HLM), the amount of variance explained by the predictor variables in teaching success of multipliers and learning success of coworkers was examined. Results showed that multipliers' conscientiousness and team cohesion were related to teaching success of multipliers; extraversion and team cohesion were related to the learning success of coworkers. In closing, the scientific and practical implications for the investigation and promotion of work-based learning processes in teams are discussed.
Resumo:
This paper details a workshop aimed at exploring opportunities for experience design through wearable art and design concepts. Specifically it explores the structure of the workshop with respect to facilitating learning through technology in the development of experiential wearable art and design. A case study titled Cloud Workshop: Wearables and Wellbeing; Enriching connections between citizens in the Asia-Pacific region was initiated through a cooperative partnership between Hong Kong Baptist University (HKBU), Queensland University of Technology (QUT) and Griffith University (GU). Digital technologies facilitated collaboration through an inter-disciplinary, inter-national and inter- cultural approach (Facer & Sandford, 2010) between Australia and Hong Kong. Students cooperated throughout a two-week period to develop innovative wearable concepts blending art, design and technology. An unpacking of the approach, pedagogical underpinning and final outcomes revealed distinct educational benefits as well as certain learning and technological challenges of the program. Qualitative feedback uncovered additional successes with respect to student engagement and enthusiasm, while uncovering shortcomings in the delivery and management of information and difficulties with cultural interactions. Potential future versions of the program aim to take advantage of the positives and overcome the limitations of the current pedagogical approach. It is hoped the case study will become a catalyst for future workshops that blur the boundaries of art, design and technology to uncover further benefits and potentials for new outcomes in experience design.
Resumo:
The built environment is a major contributor to the world’s carbon dioxide emissions, with a considerable amount of energy being consumed in buildings due to heating, ventilation and air-conditioning, space illumination, use of electrical appliances, etc., to facilitate various anthropogenic activities. The development of sustainable buildings seeks to ameliorate this situation mainly by reducing energy consumption. Sustainable building design, however, is a complicated process involving a large number of design variables, each with a range of feasible values. There are also multiple, often conflicting, objectives involved such as the life cycle costs and occupant satisfaction. One approach to dealing with this is through the use of optimization models. In this paper, a new multi-objective optimization model is developed for sustainable building design by considering the design objectives of cost and energy consumption minimization and occupant comfort level maximization. In a case study demonstration, it is shown that the model can derive a set of suitable design solutions in terms of life cycle cost, energy consumption and indoor environmental quality so as to help the client and design team gain a better understanding of the design space and trade-off patterns between different design objectives. The model can very useful in the conceptual design stages to determine appropriate operational settings to achieve the optimal building performance in terms of minimizing energy consumption and maximizing occupant comfort level.
Resumo:
As technology continues to become more accessible, miniaturised and diffused into the environment, the potential of wearable technology to impact our lives in significant ways becomes increasingly viable. Wearables afford unique interaction, communication and functional capabilities between users, their environment as well as access to information and digital data. Wearables also demand an inter-disciplinary approach and, depending on the purpose, can be fashioned to transcend cultural, national and spatial boundaries. This paper presents the Cloud Workshop project based on the theme of ‘Wearables and Wellbeing; Enriching connections between citizens in the Asia-Pacific region’, initiated through a cooperative partnership between Queensland University of Technology (QUT), Hong Kong Baptist University (HKBU) and Griffith University (GU). The project was unique due to its inter-disciplinary, inter-cultural and inter-national scope that occurred simultaneously between Australia and Hong Kong.
Resumo:
Taking a more integrated approach to planning our neighbourhoods for the continuum of inhabitants’ ages and abilities makes sense given our current and future population composition. Seldom are the built environment requirements of diverse groups (e.g. children, seniors, and people with disability) synthesised, resulting in often unfriendly and exclusionary neighbourhoods. This often means people experience barriers or restriction on their freedom to move about and interact within their neighbourhood. Applying universal design to neighbourhoods may provide a bridging link. By presenting two cases from South-East Queensland (SEQ), Australia, through the lenses of different ages and abilities - older children with physical disabilities and their families (Stafford 2013, 2014) and seniors (Baldwin et al. 2012), we intend to increase recognition of users' needs and stimulate the translation of knowledge to the practice of planning inclusive neighbourhoods.
Resumo:
Ongoing habitat loss and fragmentation threaten much of the biodiversity that we know today. As such, conservation efforts are required if we want to protect biodiversity. Conservation budgets are typically tight, making the cost-effective selection of protected areas difficult. Therefore, reserve design methods have been developed to identify sets of sites, that together represent the species of conservation interest in a cost-effective manner. To be able to select reserve networks, data on species distributions is needed. Such data is often incomplete, but species habitat distribution models (SHDMs) can be used to link the occurrence of the species at the surveyed sites to the environmental conditions at these locations (e.g. climatic, vegetation and soil conditions). The probability of the species occurring at unvisited location is next predicted by the model, based on the environmental conditions of those sites. The spatial configuration of reserve networks is important, because habitat loss around reserves can influence the persistence of species inside the network. Since species differ in their requirements for network configuration, the spatial cohesion of networks needs to be species-specific. A way to account for species-specific requirements is to use spatial variables in SHDMs. Spatial SHDMs allow the evaluation of the effect of reserve network configuration on the probability of occurrence of the species inside the network. Even though reserves are important for conservation, they are not the only option available to conservation planners. To enhance or maintain habitat quality, restoration or maintenance measures are sometimes required. As a result, the number of conservation options per site increases. Currently available reserve selection tools do however not offer the ability to handle multiple, alternative options per site. This thesis extends the existing methodology for reserve design, by offering methods to identify cost-effective conservation planning solutions when multiple, alternative conservation options are available per site. Although restoration and maintenance measures are beneficial to certain species, they can be harmful to other species with different requirements. This introduces trade-offs between species when identifying which conservation action is best applied to which site. The thesis describes how the strength of such trade-offs can be identified, which is useful for assessing consequences of conservation decisions regarding species priorities and budget. Furthermore, the results of the thesis indicate that spatial SHDMs can be successfully used to account for species-specific requirements for spatial cohesion - in the reserve selection (single-option) context as well as in the multi-option context. Accounting for the spatial requirements of multiple species and allowing for several conservation options is however complicated, due to trade-offs in species requirements. It is also shown that spatial SHDMs can be successfully used for gaining information on factors that drive a species spatial distribution. Such information is valuable to conservation planning, as better knowledge on species requirements facilitates the design of networks for species persistence. This methods and results described in this thesis aim to improve species probabilities of persistence, by taking better account of species habitat and spatial requirements. Many real-world conservation planning problems are characterised by a variety of conservation options related to protection, restoration and maintenance of habitat. Planning tools therefore need to be able to incorporate multiple conservation options per site, in order to continue the search for cost-effective conservation planning solutions. Simultaneously, the spatial requirements of species need to be considered. The methods described in this thesis offer a starting point for combining these two relevant aspects of conservation planning.
Resumo:
Design based research (DBR) is an appropriate method for small scale educational research projects involving collaboration between teachers, students and researchers. It is particularly useful in collaborative projects where an intervention is implemented and evaluated in a grounded context. The intervention can be technological, or a new program required by policy changes. It can be applied to educational contexts, such as when English teachers undertake higher degree research projects in their own or others’ sites; or for academics working collaboratively as researchers with teams of teachers. In the case described here the paper shows that DBR is designed to make a difference in the real world contexts in which occurs.
Resumo:
Distributed Collaborative Computing services have taken over centralized computing platforms allowing the development of distributed collaborative user applications. These applications enable people and computers to work together more productively. Multi-Agent System (MAS) has emerged as a distributed collaborative environment which allows a number of agents to cooperate and interact with each other in a complex environment. We want to place our agents in problems whose solutions require the collation and fusion of information, knowledge or data from distributed and autonomous information sources. In this paper we present the design and implementation of an agent based conference planner application that uses collaborative effort of agents which function continuously and autonomously in a particular environment. The application also enables the collaborative use of services deployed geographically wide in different technologies i.e. Software Agents, Grid computing and Web service. The premise of the application is that it allows autonomous agents interacting with web and grid services to plan a conference as a proxy to their owners (humans). © 2005 IEEE.
Resumo:
Background The Researching Effective Approaches to Cleaning in Hospitals (REACH) study will generate evidence about the effectiveness and cost-effectiveness of a novel cleaning initiative that aims to improve the environmental cleanliness of hospitals. The initiative is an environmental cleaning bundle, with five interdependent, evidence-based components (training, technique, product, audit and communication) implemented with environmental services staff to enhance hospital cleaning practices. Methods/design The REACH study will use a stepped-wedge randomised controlled design to test the study intervention, an environmental cleaning bundle, in 11 Australian hospitals. All trial hospitals will receive the intervention and act as their own control, with analysis undertaken of the change within each hospital based on data collected in the control and intervention periods. Each site will be randomised to one of the 11 intervention timings with staggered commencement dates in 2016 and an intervention period between 20 and 50 weeks. All sites complete the trial at the same time in 2017. The inclusion criteria allow for a purposive sample of both public and private hospitals that have higher-risk patient populations for healthcare-associated infections (HAIs). The primary outcome (objective one) is the monthly number of Staphylococcus aureus bacteraemias (SABs), Clostridium difficile infections (CDIs) and vancomycin resistant enterococci (VRE) infections, per 10,000 bed days. Secondary outcomes for objective one include the thoroughness of hospital cleaning assessed using fluorescent marker technology, the bio-burden of frequent touch surfaces post cleaning and changes in staff knowledge and attitudes about environmental cleaning. A cost-effectiveness analysis will determine the second key outcome (objective two): the incremental cost-effectiveness ratio from implementation of the cleaning bundle. The study uses the integrated Promoting Action on Research Implementation in Health Services (iPARIHS) framework to support the tailored implementation of the environmental cleaning bundle in each hospital. Discussion Evidence from the REACH trial will contribute to future policy and practice guidelines about hospital environmental cleaning. It will be used by healthcare leaders and clinicians to inform decision-making and implementation of best-practice infection prevention strategies to reduce HAIs in hospitals. Trial registration Australia New Zealand Clinical Trial Registry ACTRN12615000325505
Resumo:
Dispersing a data object into a set of data shares is an elemental stage in distributed communication and storage systems. In comparison to data replication, data dispersal with redundancy saves space and bandwidth. Moreover, dispersing a data object to distinct communication links or storage sites limits adversarial access to whole data and tolerates loss of a part of data shares. Existing data dispersal schemes have been proposed mostly based on various mathematical transformations on the data which induce high computation overhead. This paper presents a novel data dispersal scheme where each part of a data object is replicated, without encoding, into a subset of data shares according to combinatorial design theory. Particularly, data parts are mapped to points and data shares are mapped to lines of a projective plane. Data parts are then distributed to data shares using the point and line incidence relations in the plane so that certain subsets of data shares collectively possess all data parts. The presented scheme incorporates combinatorial design theory with inseparability transformation to achieve secure data dispersal at reduced computation, communication and storage costs. Rigorous formal analysis and experimental study demonstrate significant cost-benefits of the presented scheme in comparison to existing methods.