996 resultados para monolayer


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cell culture analyses of growth, morphology and apoptosis commonly require counting of different cell types stained with antibodies to discriminate between them. Previously, we reported the use of l-Leucine methyl ester (l-LME) to prepare purified cultures of type 1 astrocytes with minimal microglia, and staining by GFAP and CD antibodies, respectively. Here, we demonstrate a novel use of acridine orange (AO) for rapid discrimination between these cell types using fluorescence microscopy. AO accumulates in the lysosomes and also binds strongly to nuclear DNA and cytoplasmic/nucleolar RNA. Microglia may contain abundant lysosomes due to known roles in homeostasis and immune response. AO staining of lysosomes was tested at a range of concentrations, and 2.5 μg/mL was most suitable. In agreement with previous reports, microglia treated with AO showed very intense yellow, orange or red granular cytoplasmic staining of lysosomes. Microglia contain a substantially higher number of lysosomes than astrocytes, which have a variable amount. We measured the microglia population at 5.14 ± 0.50% in mixed cultures. Thus, these results show AO is a novel discriminatory marker, as microglia were easily observed and counted in clumps on top of the monolayer of astrocytes, providing a rapid alternative to time-consuming and costly antibody-based assays.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nonisothermal crystallization behaviors of PVA and poly (vinyl alcohol) and Silica (PVA/SiO2) nanocomposites prepared via a self-assembly monolayer (SAM) technique are investigated in this study. Differential scanning calorimetry (DSC) is used to measure the crystallization temperature and enthalpy of PVA and nanocomposites in nitrogen at various cooling rate. The results show that the degree of crystallinity of PVA and nanocomposites decreases when the SiO2 content increases but increases with an increasing cooling rate. The peak crystallization temperature decreases with an increasing cooling rate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The thermooxidative degradation of poly (vinyl alcohol)/silica (PVA/SiO2) nanocomposite prepared with self-assembly monolayer (SAM) technique is investigated by using a thermogravimetry (TG) and Fourier transform infrared spectroscopy coupled thermogravimetry (FTIR/TG). The results show that although the thermooxidative degradation process of prepared nanocomposite is similar to that of the pure PVA, its thermooxidative stability has been greatly improved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel micro-spray-assembly process and an automatic device to fabricate multilayer ultra-thin film are introduced. Employing self-assembly monolayer (SAM) technique, ultra-thin film can be assembled by utilizing the micro-spray-assembly device. The thickness and roughness of each monolayer can be controlled by varying various materials attributes, i.e., deposition time, ionic strength, pH value, molecular concentration and by selecting different manufacturing parameters of the automatic device such as spraying rate, size of micro-drop, N2 flow rate, temperature of N2 flow.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The self-assembling behavior of a single-chain quaternary ammonium amphiphile bearing azobenzene (C12AzoC6N+) on freshly cleaved mica sheet has been investigated by atomic force microscopy (AFM) method. Confocal microscopic Raman spectra confirm the adsorption of the self-assembled monolayer structure. Ex-situ AFM reveals that C12AzoC6N+ forms branch-like stripes indicating the fusion and reorganization of the micelles during drying in air as the in-situ AFM has revealed that surfactant forms spherical micelles on the mica surface. The nano-sized surface structure is strongly dependent on the change of molecular structure, which resulted from photo-induced isomerization. The nano-sized stripe is quite stable even being annealed at 90 °C for 4 h.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The adsorption of DNA on the Langmuir film of a cationic surfactant, dioctadecyldimethylammonium bromide (DODA·Br), and the change of the aggregation morphology of the composite monolayer with respect to surface pressure have been investigated by Brewster angle microscopy (BAM). In contrast with the case of DODA·Br on pure water subphase, when DNA was dispersed into subphase, its adsorption to the interface monolayer through electrostatic interaction decreases the charge density and therefore promotes the formation of domain at low surface pressure. In addition, the electrostatic interaction changed the phase morphology of DODA·Br Langmuir monolayer under different surface pressure, that is, from flower-shaped crystalline domain on the pure water subphase to circular domain on the subphase dispersed with DNA. The result also shows that the monolayer of the composite at air/water interface under the high pressure is not homogeneous, but consists of incompletely fused domains. For the Langmuir film of the surfactant with shorter alkyl-chains, similar morphology can be observed both under the high and low surface pressure. But the tight-stacked circular domain is no longer observed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Triangle-shaped nanohole, nanodot, and lattice antidot structures in hexagonal boron-nitride (h-BN) monolayer sheets are characterized with density functional theory calculations utilizing the local spin density approximation. We find that such structures may exhibit very large magnetic moments and associated spin splitting. N-terminated nanodots and antidots show strong spin anisotropy around the Fermi level, that is, half-metallicity. While B-terminated nanodots are shown to lack magnetism due to edge reconstruction, B-terminated nanoholes can retain magnetic character due to the enhanced structural stability of the surrounding two-dimensional matrix. In spite of significant lattice contraction due to the presence of multiple holes, antidot super lattices are predicted to be stable, exhibiting amplified magnetism as well as greatly enhanced half-metallicity. Collectively, the results indicate new opportunities for designing h-BN-based nanoscale devices with potential applications in the areas of spintronics, light emission, and photocatalysis. © 2009 American Chemical Society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Smooth polymerized surfaces, suitable for biochemical and biomedical applications, were deposited using a modified plasma enhanced chemical vapour deposition method with acetylene as a reaction precursor. Horseradish peroxidase (HRP) activity assays showed that the protein immobilized on the plasma polymerized surfaces maintained its biological function for a much longer period of time compared to that on uncoated surfaces. The kinetics of HRP attachment to the plasma polymerized surfaces were analyzed using quartz crystal microbalance with dissipation analysis. Spectroscopic ellipsometry and attenuated total reflection Fourier transform infrared spectroscopy were used to determine the thickness and the quantity of the attached protein. The results showed that the plasma polymerized surfaces provided a high density of attachment sites to covalently immobilize a dense monolayer of proteins.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Peptide-modified electrode surfaces have been shown to have excellent recognition properties for metal ions. An efficient method of screening a potential peptide for its selectivity for a given metal would involve the synthesis of the peptide directly on the electrode surface. This paper outlines a procedure in which the tripeptide Gly−Gly−His was synthesized one amino acid at a time on a gold surface modified with a self-assembled monolayer of the mixed alkanethiolates 3-mercaptopropionic acid (MPA) and 3-mercaptopropane (MP). Electrochemistry and high-resolution mass spectrometry were used to elucidate the structure of the adsorbed species and follow the synthesis. The amino acids can be attached only to MPA, but the presence of a diluting unreactive molecule of MP reduces steric crowding about the reaction center. The maximum coverage of synthesized tripeptide occurs at a ratio of MPA/MP of 1:1.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An electrochemical sensor for the detection of Cu2+ is reported which incorporates poly-l-aspartic acid (PLAsp) with 32–96 aspartate units as a selective ligand for the metal ion. PLAsp is covalently attached to a gold electrode modified with a monolayer of 3-mercaptopropionic acid using carbodiimide coupling via an N-hydroxysuccinimide (NHS) ester intermediate. The acid side groups and deprotonated peptide nitrogens on two aspartate moieties are thought to be primarily responsible for chelation of Cu2+, which remains bound when reduced to Cu+. A consequence of the multiple binding points that are available with a polypeptide is the low detection limit. The lowest concentration detected was 3 nM (0.2 ppb) achieved with Osteryoung square wave voltammetry. This detection limit compares favourably with that of ICP-OES and previously reported cysteine-modified electrodes. Analysis of tap and lake water samples using the PLAsp-modified electrode agreed well with ICP-OES analysis of the same samples.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The modification of electrodes with the tripeptide Gly–Gly–His for the detection of copper in water samples is described in detail. The tripeptide modified electrode was prepared by first self-assembling 3-mercaptopropionic acid (MPA) onto the gold electrode followed by covalent attachment of the tripeptide to the self-assembled monolayer using carbodiimide coupling. The electrodes were characterized using electrochemistry, a newly developed mass-spectrometry method and quantum mechanical calculations. The mass spectrometry confirmed the modification to proceed as expected with peptide bonds formed between the carboxylic acids of the MPA and the terminal amine of the peptide. Electrochemical measurements indicated that approximately half the MPA molecules in a SAM are modified with the peptide. The peptide modified electrodes exhibited high sensitivity to copper which is attributed to the stable 4N coordinate complex the peptide formed around the metal ion to give copper the preferred tetragonal coordination. The formation of a 4 coordinate complex was predicted using quantum mechanical calculation and confirmed using mass spectrometry. The adsorption of the copper to the peptide modified electrode was consistent with a Langmuir isotherm with a binding constant of (8.1 ± 0.4) 1010 M−1 at 25 °C.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel procedure combining monolayer self-assembly with electron beam lithography has been developed for attaching ferritin nanoparticles to a submicron thin-film SQUID (superconducting quantum interference device). After opening a window in the PMMA (polymethylmethacrylate) resist, organic linker molecules are used to attach ferritin to the exposed parts of the gold overlayer of a Nb nanoSQUID. This allows the magnetic nanoparticles to be located optimally as far as magnetic coupling to the nanoSQUID is concerned.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The fabrication of enzyme electrodes using self-assembled monolayers (SAMs) has attracted considerable interest because of the spatial control over the enzyme immobilization. A model system of glucose oxidase covalently bound to a gold electrode modified with a SAM of 3-mercaptopropionic acid was investigated with regard to the effect of fabrication variables such as the surface topography of the underlying gold electrode, the conditions during covalent attachment of the enzyme and the buffer used. The resultant monolayer enzyme electrodes have excellent sensitivity and dynamic range which can easily be adjusted by controlling the amount of enzyme immobilized. The major drawback of such electrodes is the response which is limited by the kinetics of the enzyme rather than mass transport of substrates. Approaches to bringing such enzyme electrodes into the mass transport limiting regime by exploiting direct electron transfer between the enzyme and the electrode are outlined.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper highlights the importance of surface coverage in modeling the removal of particles in deep bed filtration. A model that considers the saturation of sites on which particle deposition occurs is used. Experimental results obtained with monodispersed suspensions of 0.46 and 0.816 μm latex particles at different influent concentrations and ionic strengths were used to calculate the fraction of filter grain surface (β1) on which actual particle deposition occurs. This will be useful in evaluating the filter performance in terms of the utilization of available surface area of the filter medium. Further, the level of dendrite formation of particles on filter grains during filtration is expressed in terms of β1 and the specific surface coverage, θT (the fraction of a filter grain surface that is covered by particles at time T, assuming that the filter grain is covered by a monolayer of particles). This can be used to compare the contribution of deposited particles in the removal efficiency of deep bed filtration for suspensions with different physical and chemical characteristics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A gold-silver nanoframe monolayer nanostructure was obtained on the glass slide using the in-situ sacrificial template reaction. First the silver nanoprisms(~79.2 nm edge length) were prepared as the sacrificial template and were assembled on the slides through electrostatic interactions. The chloroautric acid in-situ reacted with the silver nanoprisms as oxidant. We evaluated the effect of oxidation reaction time on the morphologies and the LSPR properties of the prepared nanoframes. The thickness of gold-silver framework can be adjusted from 29.3 nm to 16.2 nm. We applied the gold-silver framework monolayer as a new surface-enhanced Raman scattering(SERS) substrate for determining 4-aminothiophenol.