869 resultados para momentum exchange
Resumo:
In the context of a gauge theory for the translation group, a conserved energy-momentum gauge current for the gravitational field is obtained. It is a true spacetime and gauge tensor, and transforms covariantly under global Lorentz transformations. By rewriting the gauge gravitational field equation in a purely spacetime form, it becomes the teleparallel equivalent of Einstein's equation, and the gauge current reduces to the Møller's canonical energy-momentum density of the gravitational field.
Resumo:
A new strategy for minimization of Cu2+ and Pb2+ interferences on the spectrophotometric determination of Cd2+ by the Malachite green (MG)-iodide reaction using electrolytic deposition of interfering species and solid phase extraction of Cd2+ in flow system is proposed. The electrolytic cell comprises two coiled Pt electrodes concentrically assembled. When the sample solution is electrolyzed in a mixed solution containing 5% (v/v) HNO3, 0.1% (v/v) H2SO4 and 0.5 M NaCl, Cu2+ is deposited as Cu on the cathode, Pb2+ is deposited as PbO2 on the anode while Cd2+ is kept in solution. After electrolysis, the remaining solution passes through an AG1-X8 resin (chloride form) packed minicolumn in which Cd2+ is extracted as CdCl4/2-. Electrolyte compositions, flow rates, timing, applied current, and electrolysis time was investigated. With 60 s electrolysis time, 0.25 A applied current, Pb2+ and Cu2+ levels up to 50 and 250 mg 1-1, respectively, can be tolerated without interference. For 90 s resin loading time, a linear relationship between absorbance and analyte concentration in the 5.00-50.0 μg Cd 1-1 range (r2 = 0.9996) is obtained. A throughput of 20 samples per h is achieved, corresponding to about 0.7 mg MG and 500 mg KI and 5 ml sample consumed per determination. The detection limit is 0.23 μg Cd 1-1. The accuracy was checked for cadmium determination in standard reference materials, vegetables and tap water. Results were in agreement with certified values of standard reference materials and with those obtained by graphite furnace atomic absorption spectrometry at 95% confidence level. The R.S.D. for plant digests and water containing 13.0 μg Cd 1-1 was 3.85% (n = 12). The recoveries of analyte spikes added to the water and vegetable samples ranged from 94 to 104%. (C) 2000 Elsevier Science B.V.
Resumo:
The local concentrations of chloride, Cl b, and bromide, Br b, in the interface of vesicles prepared with dioctadecyldimethylammonium chloride, DODAC, or bromide, DODAB, dipalmitoylphosphatidylcholine, DPPC, dimyristoylphosphatidylcholine, DMPC, and mixtures of DMPC, DPPC, and DODAC were determined by chemical trapping by analyzing product yields from spontaneous dediazoniation of vesicle-bound 2,6-dimethyl-4-hexadecylbenzenediazonium ion. The values of Cl b and Br b in DODAC and DODAB vesicles increase with vesicle size, in agreement with previous data showing that counterion dissociation decreases with vesicle size. Addition of tetramethylammonium chloride displaces bromide from the DODAB vesicular interface. The value for the selectivity constant for Br/Cl exchange at the DODAB vesicular interface obtained by chemical trapping was ∼2.0, well within values obtained for comparable amphiphiles. In vesicles of DPPC the values of Cl b were very sensitive to the nature of the cation and decreased in the order Ca 2+ > Mg 2+ > Li + > Na + > K + = Cs + = Rb + ≥ +. The effect of the cation becomes more important as temperature increases above the phase transition temperature, T m, of the lipid. The values of Cl b increased sigmoidally with the mol % of DODAC in vesicles prepared with DODAC/lipid mixtures. In sonicated vesicles prepared with DODAC and DMPC (or DPPC), the values of Cl b reach local concentrations measured for the pure amphiphile at 80 mol % DODAC. These results represent the first extensive study of local concentration of ions determined directly by chemical trapping in vesicles prepared with lipids, synthetic ampliiphiles, and their mixtures.
Resumo:
The Hamiltonian formulation of the teleparallel equivalent of general relativity is considered. Definitions of energy, momentum and angular momentum of the gravitational field arise from the integral form of the constraint equations of the theory. In particular, the gravitational energy-momentum is given by the integral of scalar densities over a three-dimensional spacelike hypersurface. The definition for the gravitational energy is investigated in the context of the Kerr black hole. In the evaluation of the energy contained within the external event horizon of the Kerr black hole, we obtain a value strikingly close to the irreducible mass of the latter. The gravitational angular momentum is evaluated for the gravitational field of a thin, slowly rotating mass shell. © 2002 The American Physical Society.
Resumo:
Includes bibliography
Resumo:
Incluye Bibliografía
Resumo:
Includes bibliography
Resumo:
Includes bibliography
Resumo:
Includes bibliography
Resumo:
Includes bibliography
Resumo:
Includes bibliography
Resumo:
Includes bibliography
Resumo:
Incluye Bibliografía
Resumo:
Thyroid hormone receptors (TRs) are ligand-gated transcription factors with critical roles in development and metabolism. Although x-ray structures of TR ligand-binding domains (LBDs) with agonists are available, comparable structures without ligand (apo-TR) or with antagonists are not. It remains important to understand apo-LBD conformation and the way that it rearranges with ligands to develop better TR pharmaceuticals. In this study, we conducted hydrogen/deuterium exchange on TR LBDs with or without agonist (T 3) or antagonist (NH3). Both ligands reduce deuterium incorporation into LBD amide hydrogens, implying tighter overall folding of the domain. As predicted, mass spectroscopic analysis of individual proteolytic peptides after hydrogen/ deuterium exchange reveals that ligand increases the degree of solvent protection of regions close to the buried ligand-binding pocket. However, there is also extensive ligand protection of other regions, including the dimer surface at H10-H11, providing evidence for allosteric communication between the ligand-binding pocket and distant interaction surfaces. Surprisingly, Cterminal activation helix H12, which is known to alter position with ligand, remains relatively protected from solvent in all conditions suggesting that it is packed against the LBD irrespective of the presence or type of ligand. T 3, but not NH3, increases accessibility of the upper part of H3-H5 to solvent, and we propose that TR H12 interacts with this region in apo-TR and that this interaction is blocked by T 3 but not NH3.Wepresent data from site-directed mutagenesis experiments and molecular dynamics simulations that lend support to this structural model of apo-TR and its ligand-dependent conformational changes. (Molecular Endocrinology 25: 15-31, 2011). Copyright © 2011 by The Endocrine Society.
Resumo:
A model of the DN interaction is presented which is developed in close analogy to the meson-exchange KN potential of the Jülich group utilizing SU(4) symmetry constraints. The main ingredients of the interaction are provided by vector meson (ρ, ω) exchange and higher-order box diagrams involving D *N, DΔ, and D *Δ intermediate states. The coupling of DN to the π Λ c and π Σ c channels is taken into account. The interaction model generates the Λ c(2595)-resonance dynamically as a DN quasi-bound state. Results for DN total and differential cross sections are presented and compared with predictions of two interaction models that are based on the leading-order Weinberg-Tomozawa term. Some features of the Λ c(2595)-resonance are discussed and the role of the near-by π Σ c threshold is emphasized. Selected predictions of the orginal KN model are reported too. Specifically, it is pointed out that the model generates two poles in the partial wave corresponding to the Λ(1405)-resonance. © 2011 SIF, Springer-Verlag Berlin Heidelberg.