918 resultados para molecular genetic marker


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The leading cause of death in the Western world continues to be coronary heart disease (CHD). At the root of the disease process is dyslipidemia an aberration in the relevant amounts of circulating blood lipids. Cholesterol builds up in the arterial wall and following rupture of these plaques, myocardial infarction or stroke can occur. Heart disease runs in families and a number of hereditary forms are known. The leading cause of adult dyslipidemia presently however is overweight and obesity. This thesis work presents an investigation of the molecular genetics of common, hereditary dyslipidemia and the tightly related condition of obesity. Familial combined hyperlipidemia (FCHL) is the most common hereditary dyslipidemia in man with an estimated population prevalence of 1-6%. This complex disease is characterized by elevated levels of serum total cholesterol, triglycerides or both and is observed in about 20% of individuals with premature CHD. Our group identified the disease to be associated with genetic variation in the USF1 transcription factor gene. USF1 has a key role in regulating other genes that control lipid and glucose metabolism as well as the inflammatory response all central processes in the progression of atherosclerosis and CHD. The first two works of this thesis aimed at understanding how these USF1 variants result in increased disease risk. Among the many, non-coding single-nucleotide polymorphisms (SNPs) that associated with the disease, one was found to have a functional effect. The risk-enhancing allele of this SNP seems to eradicate the ability of the important hormone insulin to induce the expression of USF1 in peripheral tissues. The resultant changes in the expression of numerous USF1 target genes over time probably enhance and accelerate the atherogenic processes. Dyslipidemias often represent an outcome of obesity and in the final work of this thesis we wanted to address the metabolic pathways related to acquired obesity. It is recognized that active processes in adipose tissue play an important role in the development of dyslipidemia, insulin resistance and other pathological conditions associated with obesity. To minimize the confounding effects of genetic differences present in most human studies, we investigated a rare collection of identical twins that differed significantly in the amount of body fat. In the obese, but otherwise healthy young adults, several notable changes were observed. In addition to chronic inflammation, the adipose tissue of the obese co-twins was characterized by a marked (47%) decrease in amount of mitochondrial DNA (mtDNA) a change associated with mitochondrial dysfunction. The catabolism of branched chain amino acids (BCAAs) was identified as the most down-regulated process in the obese co-twins. A concordant increase in the serum level of these insulin secretagogues was identified. This hyperaminoacidemia may provide the feed-back signal from insulin resistant adipose tissue to the pancreas to ensure an appropriately augmented secretory response. The down regulation of BCAA catabolism correlated closely with liver fat accumulation and insulin. The single most up-regulated gene (5.9 fold) in the obese co-twins was osteopontin (SPP1) a cytokine involved in macrophage recruitment to adipose tissue. SPP1 is here implicated as an important player in the development of insulin resistance. These studies of exceptional study samples provide better understanding of the underlying pathology in common dyslipidemias and other obesity associated diseases important for future improvement of intervention strategies and treatments to combat atherosclerosis and coronary heart disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

DArTseq technology is potentially the most appropriate system to discover hundreds of polymorphic genomic loci, scoring thousands of unique genomic-wide DNA fragments in one single experiment, without requiring existing DNA sequence information. The DArT complexity reduction approach in combination with Illumina short read sequencing (Hiseq2000) was applied. To test the application of DArTseq technology in pineapple, a reference population of 13 Ananas genotypes from primitive wild accessions to modern cultivars was used. In a comparison of 3 systems, the combination of restriction enzymes PstI and MseI performed the best producing 18,900 DArT markers and close to 20,000 SNPs. Based on these markers genetic relationships between the samples were identified and a dendrogram was generated. The topography of the tree corresponds with our understanding of the genetic relationships between the genotypes. Importantly, the replicated samples of all genotypes have a dissimilarity of close to 0.0 and occupy the same positions on the tree, confirming high reproducibility of the markers detected. Eventually it is planned that molecular markers will be identified that are associated with resistance to Phytophthora cinnamomi (Pc), the most economically important pathogen of pineapple in Australia, as genetic resistance is known to exist within the Ananas. Marker assisted selection can then be utilized in a pineapple breeding program to develop cultivars resistant to Pc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Root-lesion nematodes (Pratylenchus thornei and P. neglectus) cause severe economic loss in wheat in Australia. This project aims to develop adaptaed wheat lines with resistance and tolerance to both species. These lines will be made available to Australian wheat breeding companies for further crossing and development of resistant and tolerant wheat varieties. Sources of resistance will be synthetic hexaploid and landrace wheats from the Middle East. Suitable double haploid populations will be phenotyped for the development of molecular markers to resistance and tolerance genes. The value of resistance and tolerance will be extended to growers through collaboration in demonstration trials with NGA and ORANA and presentations at GRDC Updates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Congenital lactase deficiency (CLD) (MIM 223000) is a rare autosomal recessive gastrointestinal disorder characterized by watery diarrhea in infants fed with breast milk or other lactose-containing formulas. The CLD locus was previously assigned by linkage and linkage disequilibrium analyses on 2q21 in 19 Finnish families. In this study, the molecular background of this disorder is reported. The CLD locus was refined in 32 CLD patients in 24 families by using microsatellite and single nucleotide polymorphism (SNP) haplotypes. Mutation analyses were performed by direct sequencing. We identified 5 distinct mutations in the lactase (LCT) gene, encoding the enzyme that hydrolyzes lactose in the intestinal lumen. These findings facilitate genetic testing of CLD in clinical practice and enable genetic counseling. The present data also provide the basis for detailed characterization of the molecular pathogenesis of this disorder. Adult-type hypolactasia (MIM 223100) (lactase non-persistence, lactose intolerance) is an autosomal recessive gastrointestinal condition that is a result of a decline in the activity of lactase in the intestinal lumen after weaning. Adult-type hypolactasia is considered to be a normal phenomenon among mammals and symptoms are remarkably milder than experienced in CLD. Recently, a variant C/T-13910 was shown to associate with the adult-type hypolactasia trait, locating 13.9 kb upstream of the LCT gene. In this study, the functional significance of the C/T-13910 variant was determined by studying the LCT mRNA levels in intestinal biopsy samples in children and adults with different genotypes. RT-PCR followed by solid-phase minisequencing was applied to determine the relative expression levels of the LCT alleles using an informative SNP located in exon 1. In children, the C-13910 allele was observed to be downregulated after five years of age in parallel with lactase enzyme activity. The expression of the LCT mRNA in the intestinal mucosa in individuals with the T-13910 A-22018 alleles was 11.5 times higher than that found in individuals with the C-13910, G-22018 alleles. These findings suggest that the C/T-13910 associated with adult-type hypolactasia is associated with the transcriptional regulation of the LCT gene. The presence of the T-13910 A-22018 allele also showed significant elevation lactase activity. Galactose, the hydrolysing product of the milk sugar lactose, has been hypothesized to be poisonous to ovarian epithelial cells. Hence, consumption of dairy products and lactase persistence has been proposed to be a risk factor for ovarian carcinoma. To investigate whether lactase persistence is related to the risk of ovarian carcinoma the C/T-13910 genotype was determined in a cohort of 782 women with ovarian carcinoma 1331 individuals serving as controls. Lactase persistence did not associate significantly with the risk for ovarian carcinoma in the Finnish, in the Polish or in the Swedish populations. The findings do not support the hypothesis that lactase persistence increases the risk for ovarian carcinoma.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hereditary non-polyposis colorectal carcinoma (HNPCC; Lynch syndrome) is among the most common hereditary cancers in man and a model of cancers arising through deficient DNA mismatch repair (MMR). It is inherited in a dominant manner with predisposing germline mutations in the MMR genes, mainly MLH1, MSH2, MSH6 and PMS2. Both copies of the MMR gene need to be inactivated for cancer development. Since Lynch syndrome family members are born with one defective copy of one of the MMR genes in their germline, they only need to acquire a so called second hit to inactivate the MMR gene. Hence, they usually develop cancer at an early age. MMR gene inactivation leads to accumulation of mutations particularly in short repeat tracts, known as microsatellites, causing microsatellite instability (MSI). MSI is the hallmark of Lynch syndrome tumors, but is present in approximately 15% of sporadic tumors as well. There are several possible mechanisms of somatic inactivation (i.e. the second hit ) of MMR genes, for instance deletion of the wild-type copy, leading to loss of heterozygosity (LOH), methylation of promoter regions necessary for gene transcription, or mitotic recombination or gene conversion. In the Lynch syndrome tumors carrying germline mutations in the MMR gene, LOH was found to be the most frequent mechanism of somatic inactivation in the present study. We also studied MLH1/MSH2 deletion carriers and found that somatic mutations identical to the ones in the germline occurred frequently in colorectal cancers and were also present in extracolonic Lynch syndrome-associated tumors. Chromosome-specific marker analysis implied that gene conversion, rather than mitotic recombination or deletion of the respective gene locus accounted for wild-type inactivation. Lynch syndrome patients are predisposed to certain types of cancers, the most common ones being colorectal, endometrial and gastric cancer. Gastric cancer and uroepithelial tumors of bladder and ureter were observed to be true Lynch syndrome tumors with MMR deficiency as the driving force of tumorigenesis. Brain tumors and kidney carcinoma, on the other hand, were mostly MSS, implying the possibility of alternative routes of tumor development. These results present possible implications in clinical cancer surveillance. In about one-third of families suspected of Lynch syndrome, mutations in MMR genes are not found, and we therefore looked for alternative mechanisms of predisposition. According to our results, large genomic deletions, mainly in MSH2, and germline epimutations in MLH1, together explain a significant fraction of point mutation-negative families suspected of Lynch syndrome and are associated with characteristic clinical and family features. Our findings have important implications in the diagnosis and management of Lynch syndrome families.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Regardless of the existence of antibiotics, infectious diseases are the leading causes of death in the world. Staphylococci cause many infections of varying severity, although they can also exist peacefully in many parts of the human body. Most often Staphylococcus aureus colonises the nose, and that colonisation is considered to be a risk factor for spread of this bacterium. S. aureus is considered to be the most important Staphylococcus species. It poses a challenge to the field of medicine, and one of the most problematic aspects is the drastic increase of the methicillin-resistant S. aureus (MRSA) strains in hospitals and community world-wide, including Finland. In addition, most of the clinical coagulase-negative staphylococcus (CNS) isolates express resistance to methicillin. Methicillin-resistance in S. aureus is caused by the mecA gene that encodes an extra penicillin-binding protein (PBP) 2a. The mecA gene is found in a mobile genomic island called staphylococcal chromosome cassette mec (SCCmec). The SCCmec consists of the mec gene and cassette chromosome recombinase (ccr)gene complexes. The areas of the SCCmec element outside the ccr and mec complex are known as the junkyard J regions. So far, eight types of SCCmec(SCCmec I- SCCmec VIII) and a number of variants have been described. The SCCmec island is an acquired element in S. aureus. Lately, it appears that CNS might be the storage place of the SCCmec that aid the S. aureus by providing it with the resistant elements. The SCCmec is known to exist only in the staphylococci. The aim of the present study was to investigate the horizontal transfer of SCCmec between the S. aureus and CNS. One specific aim was to study whether or not some methicillin-sensitive S. aureus (MSSA) strains are more inclined to receive the SCCmec than others. This was done by comparing the genetic background of clinical MSSA isolates in the health care facilities of the Helsinki and Uusimaa Hospital District in 2001 to the representatives of the epidemic MRSA (EMRSA) genotypes, which have been encountered in Finland during 1992-2004. Majority of the clinical MSSA strains were related to the EMRSA strains. This finding suggests that horizontal transfer of SCCmec from unknown donor(s) to several MSSA background genotypes has occurred in Finland. The molecular characteristics of representative clinical methicillin-resistant S. epidermidis (MRSE) isolates recovered in Finnish hospitals between 1990 and 1998 were also studied, examining their genetic relation to each other and to the internationally recognised MRSE clones as well, so as to ascertain the common traits between the SCCmec elements in MRSE and MRSA. The clinical MRSE strains were genetically related to each other; eleven PFGE types were associated with sequence type ST2 that has been identified world-wide. A single MRSE strain may possess two SCCmec types III and IV, which were recognised among the MRSA strains. Moreover, six months after the onset of an outbreak of MRSA possessing a SCCmec type V in a long-term care facility in Northern Finland (LTCF) in 2003, the SCCmec element of nasally carried methicillin-resistant staphylococci was studied. Among the residents of a LTCF, nasal carriage of MR-CNS was common with extreme diversity of SCCmec types. MRSE was the most prevalent CNS species. Horizontal transfer of SCCmec elements is speculated to be based on the sharing of SCCmec type V between MRSA and MRSE in the same person. Additionally, the SCCmec element of the clinical human S. sciuri isolates was studied. Some of the SCCmec regions were present in S. sciuri and the pls gene was common in it. This finding supports the hypothesis of genetic exchange happening between staphylococcal species. Evaluation of the epidemiology of methicillin-resistant staphylococcal colonisation is necessary in order to understand the apparent emergence of these strains and to develop appropriate control strategies. SCCmec typing is essential for understanding the emergence of MRSA strains from CNS, considering that the MR-CNS may represent the gene pool for the continuous creation of new SCCmec types from which MRSA might originate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Association mapping seeks to identify marker alleles present at significantly different frequencies in cases carrying a particular disease or trait compared with controls. Genome-wide association studies are increasingly replacing candidate gene-based association studies for complex diseases, where a number of loci are likely to contribute to disease risk and the effect size of each particular risk allele is typically modest or low. Good study design is essential to the success of an association study, and factors such as the heritability of the disease under investigation, the choice of controls, statistical power, multiple testing and whether the association can be replicated need to be considered before beginning. Likewise, thorough quality control of the genotype data needs to be undertaken prior to running any association analyses. Finally, it should be kept in mind that a significant genetic association is not proof positive that a particular genetic locus causes a disease, but rather an important first step in discovering the genetic variants underlying a complex disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Much of the global cancer research is focused on the most prevalent tumors; yet, less common tumor types warrant investigation, since A rare disorder is not necessarily an unimportant one . The present work discusses a rare tumor type, the benign adenomas of the pituitary gland, and presents the advances which, during the course of this thesis work, contributed to the elucidation of a fraction of their genetic background. Pituitary adenomas are benign neoplasms of the anterior pituitary lobe, accounting for approximately 15% of all intracranial tumors. Pituitary adenoma cells hypersecrete the hormones normally produced by the anterior pituitary tissue, such as growth hormone (GH) and prolactin (PRL). Despite their non-metastasizing nature, these adenomas can cause significant morbidity and have to be adequately treated; otherwise, they can compromise the patient s quality of life, due to conditions provoked by hormonal hypersecretion, such as acromegaly in the case of GH-secreting adenomas, or due to compressive effects to surrounding tissues. The vast majority of pituitary adenomas arise sporadically, whereas a small subset occur as component of familial endocrine-related tumor syndromes, such as Multiple Endocrine Neoplasia type 1 (MEN1) and Carney complex (CNC). MEN1 is caused by germline mutations in the MEN1 tumor suppressor gene (11q13), whereas the majority of CNC cases carry germline mutations in the PRKAR1A gene (17q24). Pituitary adenomas are also encountered in familial settings outside the context of MEN1 and CNC, but unlike in the latter syndromes, their genetic background until recently remained elusive. Evidence in previous literature supported the notion that a tumor suppressor gene on 11q13, residing very close to but still distinct from MEN1, causes genetic susceptibility to pituitary tumors. The aim of the study was to identify the genetic cause of a low penetrance form of Pituitary Adenoma Predisposition (PAP) in families from Northern Finland. The present work describes the methodological approach that led to the identification of aryl hydrocarbon receptor interacting protein (AIP) as the gene causing PAP. Combining chip-based technologies (SNP and gene expression arrays) with traditional gene mapping methods and genealogy data, we showed that germline AIP mutations cause PAP in familial and sporadic settings. PAP patients were diagnosed with mostly adenomas of the GH/PRL-secreting cell lineage. In Finland, two AIP mutations accounted for 16% of all patients diagnosed with GH-secreting adenomas, and for 40% of patients being younger than 35 years of age at diagnosis. AIP is suggested to act as a tumor suppressor gene, a notion supported by the nature of the identified mutations (most are truncating) and the biallelic inactivation of AIP in the tumors studied. AIP has been best characterized as a cytoplasmic interaction partner of aryl hydrocarbon receptor (AHR), also known as dioxin receptor, but it has other partners as well. The mechanisms that underlie AIP-mediated pituitary tumorigenesis are to date largely unknown and warrant further investigation. Because AIP was identified in the genetically homogeneous Finnish population, it was relevant to examine its contribution to PAP in other, more heterogeneous, populations. Analysis of pituitary adenoma patient series of various ethnic origins and differing clinical settings revealed germline AIP mutations in all cohorts studied, albeit with low frequencies (range 0.8-7.4%). Overall, PAP patients were typically diagnosed at a young age (range 8-41 years), mainly with GH-secreting adenomas, without strong family history of endocrine disease. Because many PAP patients did not display family history of pituitary adenomas, detection of the condition appeared challenging. AIP immunohistochemistry was tested as a molecular pre-screening tool on mutation-positive versus mutation-negative tumors, and proved to be a potentially useful predictor of PAP. Mutation screening of a large cohort of colorectal, breast, and prostate tumors did not reveal somatic AIP mutations. These tumors, apart from being the most prevalent among men and women worldwide, have been associated with acromegaly, particularly colorectal neoplasia. In this material, AIP did not appear to contribute to the pathogenesis of these common tumor types and other genes seem likely to play a role in such tumorigenesis. Finally, the contribution of AIP in pediatric onset pituitary adenomas was examined in a unique population-based cohort of sporadic pituitary adenoma patients from Italy. Germline AIP mutations may account for a subset of pediatric onset GH-secreting adenomas (in this study one of seven GH-secreting adenoma cases or 14.3%), and appear to be enriched among young (≤25 years old) patients. In summary, this work reveals a novel tumor susceptibility gene, namely AIP, which causes genetic predisposition to pituitary adenomas, in particular GH-secreting adenomas. Moreover, it provides molecular tools for identification of individuals predisposed for PAP. Further elaborate studies addressing the functional role of AIP in normal and tumor cells will hopefully expand our knowledge on endocrine neoplasia and reveal novel cellular mechanisms of pituitary tumorigenesis, including potential drug targets.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Adult-type hypolactasia (primary lactose malabsorption, lactase non-persistence) is the most common enzyme deficiency worldwide, and manifests with symptoms of lactose intolerance such as abdominal pain, gas formation and diarrhea. In humans with adult-type hypolactasia, lactase activity is high at birth, but declines during childhood to about one-tenth of the activity at birth. In 2002, a one base polymorphism C/T-13910, located 14 kilobases from the starting codon of the lactase-phlorizin hydrolase (LPH) gene was observed to be associated with the persistence of lactase activity. The T-13910 allele (C/T-13910 and T/T-13910 genotypes) associates with persistence of lactase activity throughout life, whereas the C/C-13910 genotype associates with adult-type hypolactasia. In this thesis work, the timing and mechanism of decline of lactase enzyme activity during development was studied using the C/T-13910 polymorphism as a molecular marker. We observed an excellent correlation between low lactase activity and the C/C-13910 genotype in all subjects > 12 years of age, irrespective their ethnicity. In children of African origin, the lactase activity declined somewhat earlier than among Finnish children. Furthermore, we observed an increasing imbalance in the relative lactase mRNA expression from the C-13910 and T-13910 alleles in Finnish children beginning from five years of age. The genetic test for adult-type hypolactasia showed a sensitivity of 93% and a specificity of 100% in the Finnish children and adolescents > 12 years of age. The relation of milk consumption and the milk-related abdominal complaints to the C/T-13910 genotypes associated with lactase persistence/non-persistence was studied by a questionnaire-based approach in > 2100 Finns. Both Finnish children and adults with the C/C-13910 genotype consumed significantly less dairy products compared to those with the C/T-13910 and T/T-13910 genotypes. Flatulence was the only of the abdominal symptoms of lactose intolerance that subjects with the C/C-13910 genotype reported significantly more often than those with the C/T-13910 and T/T-13910 genotypes. A minor proportion (<10%) of subjects with the C/C-13910 genotype, nevertheless, reported drinking milk without any symptoms afterwards. There was no association between cow's milk allergy starting as a newborn and adult-type hypolactasia. In an association study an increased risk of colorectal cancer was observed among those with molecular diagnosis of adult-type hypolactasia. It warrants further studies to clarify whether the increased risk observed in the Finnish population is associated with lactose or decreased intake of dairy products in these subjects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Schizophrenia, affecting about 1% of population worldwide, is a severe mental disorder characterized by positive and negative symptoms, such as psychosis and anhedonia, as well as cognitive deficits. At present, schizophrenia is considered a complex disorder of neurodevelopmental origin with both genetic and environmental factors contributing to its onset. Although a number of candidate genes for schizophrenia have been highlighted, only very few schizophrenia patients are likely to share identical genetic liability. This study is based on the nation-wide schizophrenia family sample of the National Institute for Health and Welfare, and represents one of the largest and most well-characterized familial series in the world. In the first part of this study, we investigated the roles of the DTNBP1, NRG1, and AKT1 genes in the background of schizophrenia in Finland. Although these genes are associated with schizophrenia liability in several populations, any significant association with clinical diagnostic information of schizophrenia remained absent in our sample of 441 schizophrenia families. In the second part of this study, we first replicated schizophrenia linkage on the long arm of chromosome 7 in 352 schizophrenia families. In the following association analysis, we utilized additional clinical disorder features and intermediate phenotypes – endophenotypes - in addition to diagnostic information from altogether 290 neuropsychologically assessed schizophrenia families. An intragenic short tandem repeat allele of the regional RELN gene, supposed to play a role in the background of several neurodevelopmental disorders, showed significant association with poorer cognitive functioning and more severe schizophrenia symptoms. Additionally, this risk allele was significantly more prevalent among the individuals affected with schizophrenia spectrum disorders. We have previously identified linkage of schizophrenia and its cognitive endophenotypes on the long arms of chromosomes 2, 4, and 5. In the last part of this study, we selected altogether 104 functionally relevant candidate genes from the linked regions. We detected several promising associations, of which especially interesting are the ERBB4 gene, showing association with the severity of schizophrenia symptoms and impairments in traits related to verbal abilities, and the GRIA1 gene, showing association with the severity of schizophrenia symptoms. Our results extend the previous evidence that the genetic risk for schizophrenia is at least partially mediated via the effects of the candidate genes and their combinations on relevant brain systems, resulting in alterations in different disorder domains, such as the cognitive deficits.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This is a sub-project of the Australian Wheat and Barley Molecular Marker Program funded by GRDC and led by Drs Diane Mather and Ken Chalmers of University of Adelaide. In this sub-project we will supply phenotypic data on resistance to two species of root-lesion nematodes (Pratylenchus thornei and P. neglectus) on several populations of wheat doubled haploids. We will also supply existing genotypic data on one doubled haploid population. We will also test one population of doubled haploids (CPI133872/Janz) a second time for resistance to P. thornei and P. neglectus and supply this information to University of Adelaide for the development of molecular markers for use by wheat breeders in selecting for resistance to root-lesion nematodes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Celiac disease, or gluten intolerance, is triggered by dietary glutens in genetically susceptible individuals and it affects approximately 1% of the Caucasian population. The best known genetic risk factors for celiac disease are HLA DQ2 and DQ8 heterodimers, which are necessary for the development of the disease. However, they alone are not sufficient for disease induction, other risk factors are required. This thesis investigated genetic factors for celiac disease, concentrating on susceptibility loci on chromosomes 5q31-q33, 19p13 and 2q12 previously reported in genome-wide linkage and association studies. In addition, a novel genotyping method for the detection of HLA DQ2 and DQ8 coding haplotypes was validated. This study was conducted using Finnish and Hungarian family materials, and Finnish, Hungarian and Italian case-control materials. Genetic linkage and association were analysed in these materials using candidate gene and fine-mapping approaches. The results confirmed linkage to celiac disease on the chromosomal regions 5q31-q33 and 19p13. Fine-mapping on chromosome 5q31-q33 revealed several modest associations in the region, and highlighted the need for further investigations to locate the causal risk variants. The MYO9B gene on chromosome 19p13 showed evidence for linkage and association particularly with dermatitis herpetiformis, the skin manifestation of celiac disease. This implies a potential difference in the genetic background of the intestinal and skin forms of the disease, although studies on larger samplesets are required. The IL18RAP locus on chromosome 2q12, shown to be associated with celiac disease in a previous genome-wide association study and a subsequent follow-up, showed association in the Hungarian population in this study. The expression of IL18RAP was further investigated in small intestinal tissue and in peripheral blood mononuclear cells. The results showed that IL18RAP is expressed in the relevant tissues. Two putative isoforms of IL18RAP were detected by Western blot analysis, and the results suggested that the ratios and total levels of these isoforms may contribute to the aetiology of celiac disease. A novel genotyping method for celiac disease-associated HLA haplotypes was also validated in this thesis. The method utilises single-nucleotide polymorphisms tagging these HLA haplotypes with high sensitivity and specificity. Our results suggest that this method is transferable between populations, and it is suitable for large-scale analysis. In conclusion, this doctorate study provides an insight into the roles of the 5q31-q33, MYO9B, IL18RAP and HLA loci in the susceptibility to celiac disease in the Finnish, Hungarian and Italian populations, highlighting the need for further studies at these genetic loci and examination of the function of the candidate genes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Parechoviruses (HPEV) belong to the family Picornaviridae of positive-stranded RNA viruses. Although the parechovirus genome shares the general properties of other picornaviruses, the genus has several unique features when compared to other family members. We found that HPEV1 attaches to αv integrins on the cell surface and is internalized through the clathrin-mediated endocytic pathway. During he course of the infection, the Golgi was found to disintegrate and the ER membranes to swell and loose their ribosomes. The replication of HPEV1 was found to take place on small clusters of vesicles which contained the trans-Golgi marker GalT as well as the viral non-structural 2C protein. 2C was additionally found on stretches of modified ER-membranes, seemingly not involved in RNA replication. The viral non-structural 2A and 2C proteins were studied in further detail and were found to display several interesting features. The 2A protein was found to be a RNA-binding protein that preferably binds to positive sense 3 UTR RNA. It was found to bind also duplex RNA containing 3 UTR(+)-3 UTR(-), but not other dsRNA molecules studied. Mutagenesis revealed that the N-terminal basic-rich region as well as the C-terminus, are important for RNA-binding. The 2C protein on the other hand, was found to have both ATP-diphosphohydrolase and AMP kinase activities. Neither dATP nor other NTP:s were suitable substrates. Furthermore, we found that as a result of theses activities the protein is autophosphorylated. The intracellular changes brought about by the individual HPEV1 non-structural proteins were studied through the expression of fusion proteins. None of the proteins expressed were able to induce membrane changes similar to those seen during HPEV1 infection. However, the 2C protein, which could be found on the surface of lipid droplets but also on diverse intracellular membranes, was partly relocated to viral replication complexes in transfected, superinfected cells. Although Golgi to ER traffic was arrested in HPEV1-infected cells, none of the individually expressed non-structural proteins had any visible effect on the anterograde membrane traffic. Our results suggest that the HPEV1 replication strategy is different from that of many other picornaviruses. Furthermore, this study shows how relatively small differences in genome sequence result in very different intracellular pathology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cardiovascular disease (CVD) is a complex disease with multifactorial aetiology. Both genetic and environmental factors contribute to the disease risk. The lifetime risk for CVD differs markedly between men and women, men being at increased risk. Inflammatory reaction contributes to the development of the disease by promoting atherosclerosis in artery walls. In the first part of this thesis, we identified several inflammatory related CVD risk factors associating with the amount of DNA from whole blood samples, indicating a potential source of bias if a genetic study selects the participants based on the available amount of DNA. In the following studies, this observation was taken into account by applying whole genome amplification to samples otherwise subjected to exclusion due to very low DNA yield. We continued by investigating the contribution of inflammatory genes to the risk for CVD separately in men and women, and looked for sex-genotype interaction. In the second part, we explored a new candidate gene and its role in the risk for CVD. Selenoprotein S (SEPS1) is a membrane protein residing in the endoplasmic reticulum where it participates in retro-translocation of unfolded proteins to cytosolic protein degradation. Previous studies have indicated that SEPS1 protects cells from oxidative stress and that variations in the gene are associated with circulating levels of inflammatory cytokines. In our study, we identified two variants in the SEPS1 gene, which associated with coronary heart disease and ischemic stroke in women. This is, to our knowledge, the first study suggesting a role of SEPS1 in the risk for CVD after extensively examining the variation within the gene region. In the third part of this thesis, we focused on a set of seven genes (angiotensin converting enzyme, angiotensin II receptor type I, C-reactive protein (CRP), and fibrinogen alpha-, beta-, and gamma-chains (FGA, FGB, FGG)) related to inflammatory cytokine interleukin 6 (IL6) and their association with the risk for CVD. We identified one variant in the IL6 gene conferring risk for CVD in men and a variant pair from IL6 and FGA genes associated with decreased risk. Moreover, we identified and confirmed an association between a rare variant in the CRP gene and lower CRP levels, and found two variants in the FGA and FGG genes associating with fibrinogen. The results from this third study suggest a role for the interleukin 6 pathway genes in the pathogenesis of CVD and warrant further studies in other populations. In addition to the IL6 -related genes, we describe in this thesis several sex-specific associations in other genes included in this study. The majority of the findings were evident only in women encouraging other studies of cardiovascular disease to include and analyse women separately from men.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hereditary leiomyomatosis and renal cell cancer (HLRCC) is a rare, dominantly inherited tumor predisposition syndrome characterized by benign cutaneous and uterine (ULM) leiomyomas, and sometimes renal cell cancer (RCC). A few cases of uterine leiomyosarcoma (ULMS) have also been reported. Mutations in a nuclear gene encoding fumarate hydratase (FH), an enzyme of the mitochondrial tricarboxylic acid cycle (TCA cycle), underlie HLRCC. As a recessive condition, germline mutations in FH predispose to a neurological defect, FH deficiency (FHD). Hereditary paragangliomatosis (HPGL) is a dominant disorder associated with paragangliomas and pheochromocytomas. Inherited mutations in three genes encoding subunits of succinate dehydrogenase (SDH), also a TCA cycle enzyme, predispose to HPGL. Both FH and SDH seem to act as tumor suppressors. One of the consequences of the TCA cycle defect is abnormal activation of HIF1 pathway ( pseudohypoxia ) in the HLRCC and HPGL tumors. HIF1 drives transcription of genes encoding e.g. angiogenetic factors which can facilitate tumor growth. Recently hypoxia/HIF1 has been suggested to be one of the causes of genetic instability as well. One of the aims of this study was to broaden the clinical definers of HLRCC. To determine the cancer risk and to identify possible novel tumor types associated with FH mutations eight Finnish HLRCC/FHD families were extensively evaluated. The extension of the pedigrees and the Finnish Cancer Registry based tumor search yielded genealogical and cancer data of altogether 868 individuals. The standardized incidence ratio-based comparison of HLRCC/FHD family members with general Finnish population revealed 6.5-fold risk for RCC. Moreover, risk for ULMS was highly increased. However, according to the recent and more stringent diagnosis criteria of ULMS many of the HLRCC uterine tumors previously considered malignant are at present diagnosed as atypical or proliferative ULMs (with a low risk of recurrence). Thus, the formation of ULMS (as presently defined) in HLRCC appears to be uncommon. Though increased incidence was not observed, interestingly the genetic analyses suggested possible association of breast and bladder cancer with loss of FH. Moreover, cancer cases were exceptionally detected in an FHD family. Another clinical finding was the conventional (clear cell) type RCC of a young Spanish HLRCC patient. Conventional RCC is distinct from the types previously observed in this syndrome but according to these results, FH mutation may underlie some of young conventional cancer cases. Secondly, the molecular pathway from defective TCA cycle to tumor formation was intended to clarify. Since HLRCC and HPGL tumors display abnormally activated HIF1, the hypothesis on the link between HIF1/hypoxia and genetic instability was of interest to study in HLRCC and HPGL tumor material. HIF1α (a subunit of HIF1) stabilization was confirmed in the majority of the specimens. However, no repression of MSH2, a protein of DNA mismatch repair system, or microsatellite instability (MSI), an indicator of genetic instability, was observed. Accordingly, increased instability seems not to play a role in the tumorigenesis of pseudohypoxic TCA cycle-deficient tumors. Additionally, to study the putative alternative functions of FH, a recently identified alternative FH transcript (FHv) was characterized. FHv was found to contain instead of exon 1, an alternative exon 1b. Differential subcellular distribution, lack of FH enzyme activity, low mRNA expression compared to FH, and induction by cellular stress suggest FHv to have a role distinct from FH, for example in apoptosis or survival. However, the physiological significance of FHv requires further elucidation.