879 resultados para model predictive control approach
Resumo:
This paper presents the development of an export coefficient model to characterise the rates and sources of P export from land to water in four reservoir systems located in a semi-arid rural region in southern of Portugal. The model was developed to enable effective management of these important water resource systems under the EU Water Framework Directive. This is the first time such an approach has been fully adapted for the semi-arid systems typical of Mediterranean Europe. The sources of P loading delivered to each reservoir from its catchment were determined and scenario analysis was undertaken to predict the likely impact of catchment management strategies on the scale of rate of P loading delivered to each water body from its catchment. The results indicate the importance of farming and sewage treatment works/collective septic tanks discharges as the main contributors to the total diffuse and point source P loading delivered to the reservoirs, respectively. A reduction in the total P loading for all study areas would require control of farming practices and more efficient removal of P from human wastes prior to discharge to surface waters. The scenario analysis indicates a strategy based solely on reducing the agricultural P surplus may result in only a slow improvement in water quality, which would be unlikely to support the generation of good ecological status in reservoirs. The model application indicates that a reduction of P-inputs to the reservoirs should first focus on reducing P loading from sewage effluent discharges through the introduction of tertiary treatment (P-stripping) in all major residential areas. The fully calibrated export coefficient modelling approach transferred well to semi-arid regions, with the only significant limitation being the availability of suitable input data to drive the model. Further studies using this approach in semi-arid catchments are now needed to increase the knowledge of nutrient export behaviours in semi-arid regions.
Resumo:
A manageable, relatively inexpensive model was constructed to predict the loss of nitrogen and phosphorus from a complex catchment to its drainage system. The model used an export coefficient approach, calculating the total nitrogen (N) and total phosphorus (P) load delivered annually to a water body as the sum of the individual loads exported from each nutrient source in its catchment. The export coefficient modelling approach permits scaling up from plot-scale experiments to the catchment scale, allowing application of findings from field experimental studies at a suitable scale for catchment management. The catchment of the River Windrush, a tributary of the River Thames, UK, was selected as the initial study site. The Windrush model predicted nitrogen and phosphorus loading within 2% of observed total nitrogen load and 0.5% of observed total phosphorus load in 1989. The export coefficient modelling approach was then validated by application in a second research basin, the catchment of Slapton Ley, south Devon, which has markedly different catchment hydrology and land use. The Slapton model was calibrated within 2% of observed total nitrogen load and 2.5% of observed total phosphorus load in 1986. Both models proved sensitive to the impact of temporal changes in land use and management on water quality in both catchments, and were therefore used to evaluate the potential impact of proposed pollution control strategies on the nutrient loading delivered to the River Windrush and Slapton Ley
Resumo:
There is growing pressure on the construction industry to deliver energy efficient, sustainable buildings but there is evidence to suggest that, in practice, designs regularly fail to achieve the anticipated levels of in-use energy consumption. One of the key factors behind this discrepancy is the behavior of the building occupants. This paper explores how insights from experimental psychology could potentially be used to reduce the gap between the predicted and actual energy performance of buildings. It demonstrates why traditional methods to engage with the occupants are not always successful and proposes a model for a more holistic approach to this issue. The paper concludes that achieving energy efficiency in buildings is not solely a technological issue and that the construction industry needs to adopt a more user-centred approach.
Resumo:
Three new Mn(III) complexes [MnL1(OOCH)(OH2)] (1), [MnL2(OH2)(2)][Mn2L22(NO2)(3)] (2) and [Mn2L21(NO2)(2)] (3) (where H2L1 = H(2)Me(2)Salen = 2,7-bis(2-hydroxyphenyl)-2,6-diazaocta-2,6-diene and H2L2 = H(2)Salpn = 1,7-bis(2-hydroxyphenyl)-2,6-diazahepta-1,6-diene) have been synthesized. X-ray crystal structure analysis reveals that 1 is a mononuclear species whereas 2 contains a mononuclear cationic and a dinuclear nitrite bridged (mu-1 kappa O:2 kappa O') anionic unit. Complex 3 is a phenoxido bridged dimer containing terminally coordinated nitrite. Complexes 1-3 show excellent catecholase-like activity with 3,5-di-tert-butylcatechol (3,5-DTBC) as the substrate. Kinetic measurements suggest that the rate of catechol oxidation follows saturation kinetics with respect to the substrate and first order kinetics with respect to the catalyst. Formation of bis(mu-oxo)dimanganese(III,III) as an intermediate during the course of reaction is identified from ESI-MS spectra. The characteristic six line EPR spectra of complex 2 in the presence of 3,5-DTBC supports the formation of manganese(II)-semiquinonate as an intermediate species during the catalytic oxidation of 3,5-DTBC.
Resumo:
The translation of an ensemble of model runs into a probability distribution is a common task in model-based prediction. Common methods for such ensemble interpretations proceed as if verification and ensemble were draws from the same underlying distribution, an assumption not viable for most, if any, real world ensembles. An alternative is to consider an ensemble as merely a source of information rather than the possible scenarios of reality. This approach, which looks for maps between ensembles and probabilistic distributions, is investigated and extended. Common methods are revisited, and an improvement to standard kernel dressing, called ‘affine kernel dressing’ (AKD), is introduced. AKD assumes an affine mapping between ensemble and verification, typically not acting on individual ensemble members but on the entire ensemble as a whole, the parameters of this mapping are determined in parallel with the other dressing parameters, including a weight assigned to the unconditioned (climatological) distribution. These amendments to standard kernel dressing, albeit simple, can improve performance significantly and are shown to be appropriate for both overdispersive and underdispersive ensembles, unlike standard kernel dressing which exacerbates over dispersion. Studies are presented using operational numerical weather predictions for two locations and data from the Lorenz63 system, demonstrating both effectiveness given operational constraints and statistical significance given a large sample.
Resumo:
Prediction mechanism is necessary for human visual motion to compensate a delay of sensory-motor system. In a previous study, “proactive control” was discussed as one example of predictive function of human beings, in which motion of hands preceded the virtual moving target in visual tracking experiments. To study the roles of the positional-error correction mechanism and the prediction mechanism, we carried out an intermittently-visual tracking experiment where a circular orbit is segmented into the target-visible regions and the target-invisible regions. Main results found in this research were following. A rhythmic component appeared in the tracer velocity when the target velocity was relatively high. The period of the rhythm in the brain obtained from environmental stimuli is shortened more than 10%. The shortening of the period of rhythm in the brain accelerates the hand motion as soon as the visual information is cut-off, and causes the precedence of hand motion to the target motion. Although the precedence of the hand in the blind region is reset by the environmental information when the target enters the visible region, the hand motion precedes the target in average when the predictive mechanism dominates the error-corrective mechanism.
Resumo:
In this paper, various types of fault detection methods for fuel cells are compared. For example, those that use a model based approach or a data driven approach or a combination of the two. The potential advantages and drawbacks of each method are discussed and comparisons between methods are made. In particular, classification algorithms are investigated, which separate a data set into classes or clusters based on some prior knowledge or measure of similarity. In particular, the application of classification methods to vectors of reconstructed currents by magnetic tomography or to vectors of magnetic field measurements directly is explored. Bases are simulated using the finite integration technique (FIT) and regularization techniques are employed to overcome ill-posedness. Fisher's linear discriminant is used to illustrate these concepts. Numerical experiments show that the ill-posedness of the magnetic tomography problem is a part of the classification problem on magnetic field measurements as well. This is independent of the particular working mode of the cell but influenced by the type of faulty behavior that is studied. The numerical results demonstrate the ill-posedness by the exponential decay behavior of the singular values for three examples of fault classes.
Resumo:
It is well known that there is a dynamic relationship between cerebral blood flow (CBF) and cerebral blood volume (CBV). With increasing applications of functional MRI, where the blood oxygen-level-dependent signals are recorded, the understanding and accurate modeling of the hemodynamic relationship between CBF and CBV becomes increasingly important. This study presents an empirical and data-based modeling framework for model identification from CBF and CBV experimental data. It is shown that the relationship between the changes in CBF and CBV can be described using a parsimonious autoregressive with exogenous input model structure. It is observed that neither the ordinary least-squares (LS) method nor the classical total least-squares (TLS) method can produce accurate estimates from the original noisy CBF and CBV data. A regularized total least-squares (RTLS) method is thus introduced and extended to solve such an error-in-the-variables problem. Quantitative results show that the RTLS method works very well on the noisy CBF and CBV data. Finally, a combination of RTLS with a filtering method can lead to a parsimonious but very effective model that can characterize the relationship between the changes in CBF and CBV.
Resumo:
What is the relation between competition and performance? The present research addresses this important multidisciplinary question by conducting a meta-analysis of existing empirical work and by proposing a new conceptual model—the opposing processes model of competition and performance. This model was tested by conducting an additional meta-analysis and 3 new empirical studies. The first meta-analysis revealed that there is no noteworthy relation between competition and performance. The second meta-analysis showed, in accord with the opposing processes model, that the absence of a direct effect is the result of inconsistent mediation via achievement goals: Competition prompts performance-approach goals which, in turn, facilitate performance; and competition also prompts performance-avoidance goals which, in turn, undermine performance. These same direct and mediational findings were also observed in the 3 new empirical studies (using 3 different conceptualizations of competition and attending to numerous control variables). Our findings provide both interpretational clarity regarding past research and conceptual guidance regarding future research on the competition–performance relation.
Resumo:
In its default configuration, the Hadley Centre climate model (GA2.0) simulates roughly one-half the observed level of Madden–Julian oscillation activity, with MJO events often lasting fewer than seven days. We use initialised, climate-resolution hindcasts to examine the sensitivity of the GA2.0 MJO to a range of changes in sub-grid parameterisations and model configurations. All 22 changes are tested for two cases during the Years of Tropical Convection. Improved skill comes only from (a) disabling vertical momentum transport by convection and (b) increasing mixing entrainment and detrainment for deep and mid-level convection. These changes are subsequently tested in a further 14 hindcast cases; only (b) consistently improves MJO skill, from 12 to 22 days. In a 20-year integration, (b) produces near-observed levels of MJO activity, but propagation through the Maritime Continent remains weak. With default settings, GA2.0 produces precipitation too readily, even in anomalously dry columns. Implementing (b) decreases the efficiency of convection, permitting instability to build during the suppressed MJO phase and producing a more favourable environment for the active phase. The distribution of daily rain rates is more consistent with satellite data; default entrainment produces 6–12 mm/day too frequently. These results are consistent with recent studies showing that greater sensitivity of convection to moisture improves the representation of the MJO.
Resumo:
Quasi-stationary convective bands can cause large localised rainfall accumulations and are often anchored by topographic features. Here, the predictability of and mechanisms causing one such band are determined using ensembles of the Met Office Unified Model at convection-permitting resolution (1.5 km grid length). The band was stationary over the UK for 3 h and produced rainfall accumulations of up to 34 mm. The amount and location of the predicted rainfall was highly variable despite only small differences between the large-scale conditions of the ensemble members. Only three of 21 members of the control ensemble produced a stationary rain band; these three had the weakest upstream winds and hence lowest Froude number. Band formation was due to the superposition of two processes: lee-side convergence resulting from flow around an upstream obstacle and thermally forced convergence resulting from elevated heating over the upstream terrain. Both mechanisms were enhanced when the Froude number was lower. By increasing the terrain height (thus reducing the Froude number), the band became more predictable. An ensemble approach is required to successfully predict the possible occurrence of such quasi-stationary convective events because the rainfall variability is largely modulated by small variations of the large-scale flow. However, high-resolution models are required to accurately resolve the small-scale interactions of the flow with the topography upon which the band formation depends. Thus, although topography provides some predictability, the quasi-stationary convective bands anchored by it are likely to remain a forecasting challenge for many years to come.
Resumo:
Biological models of an apoptotic process are studied using models describing a system of differential equations derived from reaction kinetics information. The mathematical model is re-formulated in a state-space robust control theory framework where parametric and dynamic uncertainty can be modelled to account for variations naturally occurring in biological processes. We propose to handle the nonlinearities using neural networks.
Resumo:
Our digital universe is rapidly expanding,more and more daily activities are digitally recorded, data arrives in streams, it needs to be analyzed in real time and may evolve over time. In the last decade many adaptive learning algorithms and prediction systems, which can automatically update themselves with the new incoming data, have been developed. The majority of those algorithms focus on improving the predictive performance and assume that model update is always desired as soon as possible and as frequently as possible. In this study we consider potential model update as an investment decision, which, as in the financial markets, should be taken only if a certain return on investment is expected. We introduce and motivate a new research problem for data streams ? cost-sensitive adaptation. We propose a reference framework for analyzing adaptation strategies in terms of costs and benefits. Our framework allows to characterize and decompose the costs of model updates, and to asses and interpret the gains in performance due to model adaptation for a given learning algorithm on a given prediction task. Our proof-of-concept experiment demonstrates how the framework can aid in analyzing and managing adaptation decisions in the chemical industry.
Resumo:
Single-column models (SCM) are useful test beds for investigating the parameterization schemes of numerical weather prediction and climate models. The usefulness of SCM simulations are limited, however, by the accuracy of the best estimate large-scale observations prescribed. Errors estimating the observations will result in uncertainty in modeled simulations. One method to address the modeled uncertainty is to simulate an ensemble where the ensemble members span observational uncertainty. This study first derives an ensemble of large-scale data for the Tropical Warm Pool International Cloud Experiment (TWP-ICE) based on an estimate of a possible source of error in the best estimate product. These data are then used to carry out simulations with 11 SCM and two cloud-resolving models (CRM). Best estimate simulations are also performed. All models show that moisture-related variables are close to observations and there are limited differences between the best estimate and ensemble mean values. The models, however, show different sensitivities to changes in the forcing particularly when weakly forced. The ensemble simulations highlight important differences in the surface evaporation term of the moisture budget between the SCM and CRM. Differences are also apparent between the models in the ensemble mean vertical structure of cloud variables, while for each model, cloud properties are relatively insensitive to forcing. The ensemble is further used to investigate cloud variables and precipitation and identifies differences between CRM and SCM particularly for relationships involving ice. This study highlights the additional analysis that can be performed using ensemble simulations and hence enables a more complete model investigation compared to using the more traditional single best estimate simulation only.