934 resultados para mixing and phase separation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The 720 m of igneous basement that was penetrated at Site 786 of Ocean Drilling Program Leg 125 consists of boninite-series volcanics. Bronzite andesites dominate the lithology and primitive magmas of high-Ca, intermediate-Ca, and low-Ca boninite are present in subordinate amounts. Sparsely phyric boninites typically contain olivine and orthopyroxene phenocrysts with Mg numbers [= Mg/(Mg + Fe) in moles] between 86% and 87%. Their high whole-rock Mg numbers, and the absence of zonation in the phenocrysts, imply equilibration at temperatures probably between 1200° and 1250°C, and 20° to 50°C below their liquidus. Equilibrium olivine and orthopyroxene have identical Mg numbers, and Mg/Fe partitioning between these minerals and the melt thus can be described with a single Kd. The invariably phenocryst-rich bronzite andesites contain Plagioclase that has spectacular zoning and mafic phases that can be as magnesian as those of the boninite parent. The most evolved melts are rhyolites with hypersthene, Plagioclase (An50), and magnetite. Eruption temperatures for the rhyolites are estimated at about 1000°C. Some magmas contain ferroactinolite in the groundmass, which is most likely a secondary, low-temperature phase. The locally large contrasts in degree of alteration are consistent with multiple episodes of magmatic activity. However, all igneous events produced boninite volcanics. Only the first, the edifice-building episode, gave rise to differentiated magmas. Differentiation of parental boninites took place by limited fractional crystallization, producing bronzite andesites. The erupted andesites, dacites and rhyolites are filter pressed extracts from these bronzite andesite magmas, which, as a result, have accumulated crystals. Subsequent younger igneous events produced high-Ca and intermediate-Ca boninites which intruded as dikes and sills throughout the basement sequence. The mineralogy of the dikes and sills reflects variable degrees of subliquidus cooling of the magma before emplacement.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Antarctic Circumpolar Current is key to the mixing and ventilation of the world's oceans. This current flows from west to east between about 45° and 70° S connecting the Atlantic, Pacific and Indian oceans, and is driven by westerly winds and buoyancy forcing. High levels of productivity in the current regulate atmospheric CO2 concentrations. Reconstructions of the current during the last glacial period suggest that flow speeds were faster or similar to present, and it is uncertain whether the strength and position of the westerly winds changed. Here we reconstruct Antarctic Circumpolar Current bottom speeds through the constricting Drake Passage and Scotia Sea during the Last Glacial Maximum and Holocene based on the mean grain size of sortable silt from a suite of sediment cores. We find essentially no change in bottom flow speeds through the region, and, given that the momentum imparted by winds, and modulated by sea-ice cover, is balanced by the interaction of these flows with the seabed, this argues against substantial changes in wind stress. However, glacial flow speeds in the sea-ice zone south of 56° S were significantly slower than present, whereas flow in the north was faster, but not significantly so. We suggest that slower flow over the rough topography south of 56° S may have reduced diapycnal mixing in this region during the last glacial period, possibly reducing the diapycnal contribution to the Southern Ocean overturning circulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Particle mixing rates have been determined for 5 South Atlantic/Antarctic and 3 equatorial Pacific deep-sea cores using excess 210Pb and 32Si measurements. Radionuclide profiles from these siliceous, calcareous, and clay-rich sediments have been evaluated using a steady state vertical advection diffusion model. In Antarctic siliceous sediments210Pb mixing coefficients (0.04-0.16 cm**2/y) are in reasonable agreement with the 32Si mixing coefficient (0.2 or 0.4 cm**2/y, depending on 32Si half-life). In an equatorial Pacific sediment core, however, the 210Pb mixing coefficient (0.22 cm**2/y) is 3-7 times greater than the 32Si mixing coefficient (0.03 or 0.07 cm**2/y). The difference in 210Pb and 32Si mixing rates in the Pacific sediments results from: (1) non-steady state mixing and differences in characteristic time and depth scales of the two radionuclides, (2) preferential mixing of fine-grained clay particles containing most of the 210Pb activity relative to coarser particles (large radiolaria) containing the 32Si activity, or (3) the supply of 222Rn from the bottom of manganese nodules which increases the measured excess 210Pb activity (relative to 226Ra) at depth and artificially increases the 210Pb mixing coefficient. Based on 32Si data and pore water silica profiles, dissolution of biogenic silica in the sediment column appears to have a minor effect on the 32Si profile in the mixed layer. Deep-sea particle mixing rates reported in this study and the literature do not correlate with sediment type, sediment accumulation rate, or surface productivity. Based on differences in mixing rate among three Antarctic cores collected within 50 km of each other, local variability in the intensity of deep-sea mixing appears to be as important as regional differences in sediment properties.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Arctic seabirds are exposed to a wide range of halogenated organic contaminants (HOCs). Exposure occurs mainly through food intake, and many pollutants accumulate in lipid-rich tissues. Little is known about how HOCs are biotransformed in arctic seabirds. In this study, we characterized biotransformation enzymes in chicks of northern fulmars (Fulmarus glacialis) and black-legged kittiwakes (Rissa tridactyla) from Kongsfjorden (Svalbard, Norway). Phase I and II enzymes were analyzed at the transcriptional, translational and activity levels. For gene expression patterns, quantitative polymerase chain reactions (qPCR), using gene-sequence primers, were performed. Protein levels were analyzed using immunochemical assays of western blot with commercially available antibodies. Liver samples were analyzed for phase I and II enzyme activities using a variety of substrates including ethoxyresorufin (cytochrome (CYP)1A1/1A2), pentoxyresorufin (CYP2B), methoxyresorufin (CYP1A), benzyloxyresorufin (CYP3A), testosterone (CYP3A/CYP2B), 1-chloro-2,4-nitrobenzene (CDNB) (glutathione S-transferase (GST)) and 4-nitrophenol (uridine diphosphate glucuronyltransferase (UDPGT)). In addition, the hydroxylated (OH-) polychlorinated biphenyls (PCBs) were analyzed in the blood, liver and brain tissue, whereas the methylsulfone (MeSO2-) PCBs were analyzed in liver tissue. Results indicated the presence of phase I (CYP1A4/CYP1A5, CYP2B, and CYP3A) and phase II (GST and UDPGT) enzymes at the activity, protein and/or mRNA level in both species. Northern fulmar chicks had higher enzyme activity than black-legged kittiwake chicks. This in combination with the higher XOH-PCB to parent PCB ratios suggests that northern fulmar chicks have a different biotransformation capacity than black-legged kittiwake chicks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During recent years, the basins of the Kara Sea (Kamennomysskaya, Obskaya, and Chugor'yakhinskaya structures) in the Russian Federation have been considered as promising regions for oil and gas exploration and, simultaneously, as possible paths of relatively cheap pipeline and tanker transportation of hydrocarbons projected for recovery. On the other hand, exploration operations, recovery, and transportation of gas pose a considerable risk of accidents and environmental pollution, which causes a justified concern about the future state of the ecological system of the Gulf of Ob and the adjoining parts of the Kara Sea. Therefore, regular combined environmental investigations (monitoring) are the most important factor for estimating the current state and forecasting the dynamics of the development of estuary systems. The program of investigations (schedule, station network, and measured parameters) is standardized in accordance with the international practice of such work and accounts for the experience of monitoring studies of Russian and foreign researchers. Two measurement sessions were performed during ecological investigations in the region of exploration drilling: at the beginning at final stage of drilling operations and borehole testing; in addition, natural parameters were determined in various parts of the Ob estuary before the beginning of investigations. Hydrophysical and hydrochemical characteristics of the water medium were determined and bottom sediments and water were analyzed for various pollutants (petroleum products, heavy metals, and radionuclides). The forms of heavy-metal occurrence in river and sea waters were determined by the method of continuous multistep filtration, which is based on water component fractionation on membrane filters of various pore sizes. These investigations revealed environmental pollution by chemical substances during the initial stage of drilling operations, when remains of fuels, oils, and solutions could be spilled, and part of the chemical pollutants could enter the environment. Owing to horizontal and vertical turbulent diffusion, wave mixing, and the effect of the general direction of currents in the Ob estuary from south to north, areas are formed with elevated concentrations of the analyzed elements and compounds. However, the concentration levels of chemical pollutants are practically no higher than the maximum admissible concentrations, and their substantial dissipation to the average regional background contents can be expected in the near future. Our investigations allowed us to determine in detail the parameters of anthropogenic pollution in the regions affected by hydrocarbon exploration drilling in the Obskii and Kamennomysskii prospects in the Gulf of Ob and estimate their influence on the ecological state of the basin of the Ob River and the Kara Sea on the whole.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Upwelling along the western coast of Africa south of the equator may be partitioned into three major areas, each having its own dynamics and history: (1) the eastern equatorial region, comprising the Congo Fan and the area of Mid-Angola; (2) the Namibia upwelling system, extending from the Walvis Ridge to Lüderitz; and (3) the Cape Province region, where upwelling is subdued. The highest nutrient contents in thermocline waters are in the northern region, the lowest in the southern one. Wind effects are at a maximum near the southern end of the Namibia upwelling system, and maximum productivity occurs near Walvis Bay, where the product between upwelling rate and nutrient content of upwelled waters is at a maximum. In the Congo/Angola region, opal tends to follow organic carbon quite closely in the Quaternary record. However, organic carbon has a strong precessional component, while opal does not. Despite relatively low opal content, sediments off Angola show the same patterns as those off the Congo; thus, they are part of the same regime. The spectrum shows nonlinear interference patterns between high- and low-latitude forcing, presumably tied to thermocline fertility and wind. On Walvis Ridge, as in the Congo-Angola region, the organic matter record behaves normally; that is, supply is high during glacial periods. In contrast, interglacial periods are favorable for opal deposition. The pattern suggests reduction in silicate content of the thermocline during glacial periods. The reversed phase (opal abundant during interglacials) persists during the entire Pleistocene and can be demonstrated deep into the Pliocene, not just on Walvis Ridge but all the way to the Oranje River and off the Cape Province. From comparison with other regions, it appears that silicate is diminished in the global thermocline, on average, whenever winds become strong enough to substantially shorten the residence time of silicate in upper waters (Walvis Hypothesis, solving the Walvis Paradox of reversed phase in opal deposition). The central discovery during Leg 175 was the documentation of a late Pliocene opal maximum for the entire Namibia upwelling system (early Matuyama Diatom Maximum [MDM]). The maximum is centered on the period between the end of the Gauss Chron and the beginning of the Olduvai Chron. A rather sharp increase in both organic matter deposition and opal deposition occurs near 3 Ma in the middle of the Gauss Chron, in association with a series of major cooling steps. As concerns organic matter, high production persists at least to 1 Ma, when there are large changes in variability, heralding subsequent pulsed production periods. From 3 to 2 Ma, organic matter and opal deposition run more or less parallel, but after 2 Ma opal goes out of phase with organic matter. Apparently, this is the point when silicate becomes limiting to opal production. Thus, the MDM conundrum is solved by linking planetary cooling to increased mixing and upwelling (ramping up to the MDM) and a general removal of silicate from the upper ocean through excess precipitation over global supply (ramping down from the MDM). The hypothesis concerning the origin of the Namibia opal acme or MDM is fundamentally the same as the Walvis Hypothesis, stating that glacial conditions result in removal of silicate from the thermocline (and quite likely from the ocean as a whole, given enough time). The Namibia opal acme, and other opal maxima in the latest Neogene in other regions of the ocean, marks the interval when a cooling ocean selectively removes the abundant silicate inherited from a warm ocean. When the excess silicate is removed, the process ceases. According to the data gathered during Leg 175, major upwelling started in the late part of the late Miocene. Presumably, this process contributed to the drawing down of carbon dioxide from the atmosphere, helping to prepare the way for Northern Hemisphere glaciation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Comprehensive geochronological and isotope-geochemical studies showed that the Late Quaternary Elbrus Volcano (Greater Caucasus) experienced long (approximately 200 ka) discrete evolution with protracted periods of igneous quiescence (approximately 50 ka) between large-scale eruptions. Volcanic activity of Elbrus is subdivided into three phases: Middle Neopleistocene (225-170 ka), Late Neopleistocene (110-70 ka), and Late Neopleistocene - Holocene (earlier than 35 ka). Petrogeochemical and isotope (Sr-Nd-Pb) signatures of Elbrus lavas point to their mantle-crustal origin. It was shown that hybrid parental magmas of the volcano formed due to mixing and/or contamination of deep-seated mantle melts by Paleozoic upper crustal material of the Greater Caucasus. Mantle reservoir that participated in genesis of Elbrus lavas as well as most other Neogene-Quaternary magmatic rocks of Caucasus was represented by the lower mantle "Caucasus" source. Primary melts generated by this source in composition corresponded to K-Na subalkali basalts with the following isotopic characteristics: 87Sr/86Sr = 0.7041+/-0.0001, e-Nd = +4.1+/-0.2, 147Sm/144Nd = 0.105-0.114, 206Pb/204Pb = 18.72, 207Pb/204Pb = 15.62, and 208Pb/204Pb = 38.78. Temporal evolution of isotope characteristics for lavas of the Elbrus Volcano is well described by a Sr-Nd mixing hyperbole between "Caucasus" source and estimated average composition of the Paleozoic upper crust of the Greater Caucasus. It was shown that, with time, proportions of mantle material in parental magmas of Elbrus gently increased: from ~60% at the Middle-Neopleistocene phase of activity to ~80% at the Late Neopleistocene - Holocene phase, which indicates an increase of activity of a deep-seated source at decreasing input of crustal melts or contamination with time. Unraveled evolution of the volcano with discrete eruption events, lacking signs of cessation of the Late Neopleistocene - Holocene phase, increasing contribution of the deep-seated mantle source in genesis of Elbrus lavas with time as deduced from isotope-geochemical data, as well as numerous geophysical and geological evidence indicate that Elbrus is a potentially active volcano and its eruptions may be resumed. Possible scenarios were proposed for evolution of the volcano, if its eruptive activity continued.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Seventeen eastern Mediterranean Pliocene sapropels from ODP Sites 964, 966, 967 and 969, some of which are coeval, have been analysed for their geochemistry. The sapropels are characterized by very high organic carbon contents (up to 30%) which are reported to be the result of both increased productivity and improved preservation. Although the organic matter in the sapropels is mainly of marine origin, the d13Corg values and C/N ratios appear "terrestrial". This is the result of anaerobic organic matter degradation which preferentially removed nitrogen- and 13C-rich organic components. A comparison with Ti/Al profiles, which mimic the precession index, and a calculation of organic carbon accumulation rates indicate that sedimentation rates were at most 30% lower or at most 50% higher during sapropel formation. Thus, sapropel formation lasted from between 2000 and 10,000 years at Site 964 to between 4500 and 12,000 years at Site 967. A synthesis of new data and a comparison with existing models indicates that productivity, which increased due to extra nutrients supplied as a result of winter mixing and as a result of enhanced input by the Nile, was the driving mechanism behind sapropel formation. The resulting sapropel formation was simultaneous at different depths, but lasted longer in the part of the basin closest to the Nile.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Not all boninites are glassy lavas. Those of Hole 458 in the Mariana fore-arc region are submarine pillow lavas and more massive flows in which glass occurs only in quenched margins. Pillow and flow interiors have abundant Plagioclase spherulites, microlites, or even larger crystals but can be recognized as boninites by (1) occurrence of bronzite, (2) presence of augite-bronzite microphenocryst intergrowths, and (3) reversal of the usual basaltic groundmass crystallization sequence of plagioclase-augite to augite-plagioclase. The latter is accentuated by sharply contrasting augite and Plagioclase crystal morphologies near pillow margins, a consequence of rapid cooling rates. This crystallization sequence appears to be a consequence of boninites having higher SiO2 and Mg/Mg + Fe than basalts but lower CaO/Al2O3. Microprobe data are used to illustrate the effects of rapid cooling on the compositions of pyroxene and microphenocrysts in a glassy boninite sample and to estimate temperatures of crystallization of coexisting bronzite and augite. A range from 1320°C to 1200°C is calculated with an average of 1250°C. This is higher by 120°-230° than the known range for western Pacific arc tholeiites and by over 300° than for calc-alkalic andesites. Boninites of Hole 458 lack olivine and clinoenstatite but are otherwise chemically and petrographically similar to boninites that have these minerals. In order to distinguish the two types, the Hole 458 lavas are here termed boninites and the others are termed olivine boninites. Arc tholeiite pillow lavas from Holes 458 and 459B are briefly described and their textures compared to fractionated, moderately iron-enriched, abyssal tholeiites. Massive tholeiite flows contain striking quartz-alkali feldspar micrographic intergrowths with coarsely spherulitic textures resulting from in situ magmatic differentiation. Such intergrowths are rare in massive abyssal tholeiites cored by DSDP and probably occur here because arc tholeiites have higher normative quartz at comparable degrees of iron enrichment - a result of higher oxygen fugacities and earlier separation of titanomagnetite - than abyssal tholeiites.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The northern Arabian Sea is one of the few regions in the open ocean where thermocline water is severely depleted in oxygen. The intensity of this oxygen minimum zone (OMZ) has been reconstructed over the past 225,000 years using proxies for surface water productivity, water column denitrification, winter mixing, and the aragonite compensation depth (ACD). Changes in OMZ intensity occurred on orbital and suborbital timescales. Lowest O2 levels correlate with productivity maxima and shallow winter mixing. Precession-related productivity maxima lag early summer insolation maxima by ~6 kyr, which we attribute to a prolonged summer monsoon season related to higher insolation at the end of the summer. Periods with a weakened or even non-existent OMZ are characterized by low productivity conditions and deep winter mixing attributed to strong and cold winter monsoonal winds. The timing of deep winter mixing events corresponds with that of periods of climatic cooling in the North Atlantic region.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Biodiversity estimates through geological times are difficult because of taphonomic perturbations that affect sedimentary records. Pristine shell assemblages, however, allow for calibration of past diversity. Diversity structures of two exceptionally preserved Miocene bivalve assemblages are quantitatively determined, compared with recent communities and used as paleoenvironmental proxy. The extremely rich assemblages were collected in Aquitanian (Early Miocene) carbonate sands of the Vives Quarry (Meilhan, SW France). Both paleontological and sedimentological data indicate a coral patch-reef environment, which deposits were affected by transport processes. Among two samples more than 28.000 shells were counted and 135 species identified. Sample Vives 1 is interpreted as a proximal debris flow and Sample Vives 2 as a sandy shoreface/foreshore environment influenced by storms. The two Vives assemblages have a similar diversity structure despite facies differences. Rarefaction curves level off at ~600 shells. The rare species account for more than 80 % of the species pool. The high values of PIE diversity index suggest a relatively high species richness and an even distribution of abundance of the most common species within the assemblages. The fossil data are compared to death shell assemblages (family level) of a modern reefal setting (Touho area, New Caledonia). The shape of the rarefaction curves and PIE indices of Meilhan fossil assemblages compare well to modern data, especially those of deep (>10 m water depth), sandy depositional environments found downward the reef slope (slope and pass settings). In addition to primary ecological signals, the similarity of the Vives samples and the Recent deep samples derives from taphonomic processes. This assumption is supported by sedimentological and paleontological observations. Sediment transports gather allochthonous and in situ materials leading to mixing of various ecological niches. Such taphonomic processes are recorded in the diversity metrics. Environmental mixing and time-averaging of the shell assemblages disturb the preservation of local-scale diversity properties but favour the sampling of the regional-scale diversity.