925 resultados para mission statement


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In children with structurally normal hearts, the mechanisms of arrhythmias are usually the same as in the adult patient. Some arrhythmias are particularly associated with young age and very rarely seen in adult patients. Arrhythmias in structural heart disease may be associated either with the underlying abnormality or result from surgical intervention. Chronic haemodynamic stress of congenital heart disease (CHD) might create an electrophysiological and anatomic substrate highly favourable for re-entrant arrhythmias. As a general rule, prescription of antiarrhythmic drugs requires a clear diagnosis with electrocardiographic documentation of a given arrhythmia. Risk-benefit analysis of drug therapy should be considered when facing an arrhythmia in a child. Prophylactic antiarrhythmic drug therapy is given only to protect the child from recurrent supraventricular tachycardia during this time span until the disease will eventually cease spontaneously. In the last decades, radiofrequency catheter ablation is progressively used as curative therapy for tachyarrhythmias in children and patients with or without CHD. Even in young children, procedures can be performed with high success rates and low complication rates as shown by several retrospective and prospective paediatric multi-centre studies. Three-dimensional mapping and non-fluoroscopic navigation techniques and enhanced catheter technology have further improved safety and efficacy even in CHD patients with complex arrhythmias. During last decades, cardiac devices (pacemakers and implantable cardiac defibrillator) have developed rapidly. The pacing generator size has diminished and the pacing leads have become progressively thinner. These developments have made application of cardiac pacing in children easier although no dedicated paediatric pacing systems exist.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Much biomedical research is observational. The reporting of such research is often inadequate, which hampers the assessment of its strengths and weaknesses and of a study's generalisability. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Initiative developed recommendations on what should be included in an accurate and complete report of an observational study. We defined the scope of the recommendations to cover three main study designs: cohort, case-control, and cross-sectional studies. We convened a 2-day workshop in September 2004, with methodologists, researchers, and journal editors to draft a checklist of items. This list was subsequently revised during several meetings of the coordinating group and in e-mail discussions with the larger group of STROBE contributors, taking into account empirical evidence and methodological considerations. The workshop and the subsequent iterative process of consultation and revision resulted in a checklist of 22 items (the STROBE Statement) that relate to the title, abstract, introduction, methods, results, and discussion sections of articles. 18 items are common to all three study designs and four are specific for cohort, case-control, or cross-sectional studies. A detailed Explanation and Elaboration document is published separately and is freely available on the Web sites of PLoS Medicine, Annals of Internal Medicine, and Epidemiology. We hope that the STROBE Statement will contribute to improving the quality of reporting of observational studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

von Paul Cohen-Portheim

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PLATO 2.0 has recently been selected for ESA’s M3 launch opportunity (2022/24). Providing accurate key planet parameters (radius, mass, density and age) in statistical numbers, it addresses fundamental questions such as: How do planetary systems form and evolve? Are there other systems with planets like ours, including potentially habitable planets? The PLATO 2.0 instrument consists of 34 small aperture telescopes (32 with 25 s readout cadence and 2 with 2.5 s candence) providing a wide field-of-view (2232 deg 2) and a large photometric magnitude range (4–16 mag). It focusses on bright (4–11 mag) stars in wide fields to detect and characterize planets down to Earth-size by photometric transits, whose masses can then be determined by ground-based radial-velocity follow-up measurements. Asteroseismology will be performed for these bright stars to obtain highly accurate stellar parameters, including masses and ages. The combination of bright targets and asteroseismology results in high accuracy for the bulk planet parameters: 2 %, 4–10 % and 10 % for planet radii, masses and ages, respectively. The planned baseline observing strategy includes two long pointings (2–3 years) to detect and bulk characterize planets reaching into the habitable zone (HZ) of solar-like stars and an additional step-and-stare phase to cover in total about 50 % of the sky. PLATO 2.0 will observe up to 1,000,000 stars and detect and characterize hundreds of small planets, and thousands of planets in the Neptune to gas giant regime out to the HZ. It will therefore provide the first large-scale catalogue of bulk characterized planets with accurate radii, masses, mean densities and ages. This catalogue will include terrestrial planets at intermediate orbital distances, where surface temperatures are moderate. Coverage of this parameter range with statistical numbers of bulk characterized planets is unique to PLATO 2.0. The PLATO 2.0 catalogue allows us to e.g.: - complete our knowledge of planet diversity for low-mass objects, - correlate the planet mean density-orbital distance distribution with predictions from planet formation theories,- constrain the influence of planet migration and scattering on the architecture of multiple systems, and - specify how planet and system parameters change with host star characteristics, such as type, metallicity and age. The catalogue will allow us to study planets and planetary systems at different evolutionary phases. It will further provide a census for small, low-mass planets. This will serve to identify objects which retained their primordial hydrogen atmosphere and in general the typical characteristics of planets in such low-mass, low-density range. Planets detected by PLATO 2.0 will orbit bright stars and many of them will be targets for future atmosphere spectroscopy exploring their atmosphere. Furthermore, the mission has the potential to detect exomoons, planetary rings, binary and Trojan planets. The planetary science possible with PLATO 2.0 is complemented by its impact on stellar and galactic science via asteroseismology as well as light curves of all kinds of variable stars, together with observations of stellar clusters of different ages. This will allow us to improve stellar models and study stellar activity. A large number of well-known ages from red giant stars will probe the structure and evolution of our Galaxy. Asteroseismic ages of bright stars for different phases of stellar evolution allow calibrating stellar age-rotation relationships. Together with the results of ESA’s Gaia mission, the results of PLATO 2.0 will provide a huge legacy to planetary, stellar and galactic science.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

von Gustav H. Dalman. Mit Beiträgen von P. P. E. Gottheil u. P. R. Bieling