996 resultados para metastable states
Resumo:
Stabilization effect on metastable phase II of isotactic polybutene-1 (iPB-1) by coated carbon has been investigated by transmission electron microscopy (TEM) and electron diffraction (ED) techniques. The results indicate that after evaporating carbon, the phase II-I crystal transformation time is greatly prolonged from 9 days for carbon-uncoated samples to 120 days for carbon-coated ones under atmospheric pressure, while under high pressure (50 bar), the phase transformation time increases from 5 min for the former to 20 min for the latter. The stabilization effect on metastable phase II of carbon coated iPB-1 is attributed to a surface fixing effect of the evaporated carbon.
Resumo:
The self-assembly of diblock copolymer mixtures (A-b-B/A-b-C or A-b-B/B-b-C mixtures) subjected to cylindrical confinement (two-dimensional confinement) was investigated using a Monte Carlo method. In this study, the boundary surfaces were configured to attract blocks A but repel blocks B and C. Relative to the structures of the individual components, the self-assembled structures of mixtures of the diblock copolymers were more complex and interesting. Under cylindrical confinement, with varying cylinder diameters and interaction energies between the boundary surfaces and the blocks, we observed a variety of interesting morphologies. Upon decreasing the cylinder's diameter, the self-assembled structures of the A(15)B(15)/A(15)C(15) mixtures changed from double-helix/cylinder structures (blocks B and C formed double helices, whereas blocks A formed the outer barrel and inner core) to stacked disk/cylinder structures (blocks B and C formed the stacked disk core, blocks A formed the outer cylindrical barrel), whereas the self-assembled structures of the A(15)B(7)/B7C15 mixtures changed from concentric cylindrical barrel structures to screw/cylinder structures (blocks C formed an inside core winding with helical stripes, whereas blocks A and B formed the outer cylindrical barrels) and then finally to the stacked disk/cylinder structures.
Resumo:
Crystallization and phase transition behaviors of n-nonadecane in microcapsules with a diameter of about 5 mu m were studied with the combination of differential scanning calorimetry ( DSC) and synchrotron radiation X-ray diffraction ( XRD). As evident from the DSC measurement, a surface freezing monolayer, which is formed in the microcapsules before the bulk crystallization, induces a novel metastable rotator phase ( RII), which has not been reported anywhere else. We argue that the existence of the surface freezing monolayer decreases the nucleating potential barrier of the RII phase and induces its appearance, while the lower free energy in the confined geometry turns the transient RII phase to a " long- lived" metastable phase.
Resumo:
Density functional theory (DFT) electronic structure calculations were carried out to predict the structures and the absorption and emission spectra for porphyrin and a series of carbaporphyrins-carbaporphyrin, adj-dicarbaporphyrin, opp-dicarbaporphyrin, tricarbaporphyrin and tetracarbaporphyrin. The ground- and excited-state geometries were optimized at the B3LYP/6-31g(d) and CIS/6-31g(d) level, respectively. The optimized ground-state geometry and absorption spectra of porphyrin, calculated by DFT and time-dependent DFT (TDDFT), are comparable with the available experimental values. Based on the optimized excited-state geometries obtained by CIS/6-31g(d) method, the emission properties are calculated using TDDFT method at the B3LYP/6-31g(d) level. The effects of the substitution of nitrogen atoms with carbon atoms at the center positions of porphyrin are discussed. The results indicate that the two-pyrrole nitrogens are important to the chemical and physical properties for porphyrin.
Resumo:
The phase transition behavior of a thermotropic liquid crystalline poly(aryl ether ketone) synthesized by nucleophilic substitution reactions of 4,4'-biphenol (BP), and chlorohydroquinone (CH) with 1,4-bis(4-fluorobenzoyl)benzene (BF) has been investigated by differential scanning calorimetry (DSC) and wide angle X-ray diffraction (WAXD). The copolymer exhibits multiple first order phase transitions, which are associated with crystal-to-smectic liquid crystal transition and smectic liquid crystal-to-isotropic transition. When the cooling rate is low (<10
Resumo:
After isothermal crystallization of the amorphous poly(ether ether ketone), double endothermic behaviour can be found through differential scanning calorimetry experiments. During the heating scan of semicrystalline PEEK, a metastable melt, which comes from the melt of the thinner lamellar crystal populations, can be obtained between these two endotherms. The metastable melt can recrystallize immediately just above the lower melting temperature and form slightly thicker lamellae than the original ones. The thickness and the perfection depend upon the crystallization time and the crystallization temperature. By comparing the TEM morphological observations of the samples before and after partial melting, it can be shown that lamellar crystals, having different thermodynamic stability, form during isothermal crystallization. After partial melting, only the type of lamellar crystal exhibiting the higher thermodynamic stability remains. Wide angle X-ray diffraction measurements shows a slightly change in the crystallinity of the samples before and after the partial melting. Small angle X-ray scattering results exhibit a change in the long period of the lamellar crystals before and after the partial melting process. The crystallization kinetics of the metastable melt can be determined by means of differential scanning calorimetry. The kinetic analysis showed that the isothermal crystallization of the metastable PEEK melt proceeds with an Avrami exponent of n = 1.0 similar to 1.4, reflecting that probably one-dimensional or an irregular line growth of the crystal occurred between the existing main lamellae with heterogeneous nucleation. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
The synchronous fluorescence spectra of hemoglobin solutions are reported for the first rime. The main fluorescence peaks observed in the spectra are assigned. The effect of the concentration of hemoglobin solution on the spectra is studied. Characteristic fluorescence peaks due to the dimer and tetramer of hemoglobin molecules are recognized. (C) 1998 Academic Press.
Resumo:
During heating of semicrystalline PET, a metastable melt forms far below the equilibrium melting temperature. Crystallization kinetics of this metastable melt is discussed on the basis of DSC results. From the metastable melt almost one-dimensional growth of the crystal occurs through heterogeneous nucleation.
Resumo:
The states of cytochrome C molecules in aquous solution were studied with synchronous fluorescence spectroscopy, It was found that the synchronous fluorescent spectra of cytochrome C were contributed by tyrosine and tryptophan residues separately at Delta lambda = 20 nm and Delta lambda = 80 nm, The peak position in synchronous fluorescent spectra of tyrosine residues in cytochrome C molecule does not change with its concentration, but that of tryptophan residue changes with its concentration, Only one peak at 340.0 nm was observed in the dilute solution of cytochrome C, With increasing the concentration of cytochrome C, a new peak at 304. 0 nm appeared. The peak at 340.0 nm disappeared and only one peak at 304.0 nm was observed at a higher concentration of cytochrome C, It may originate from the change of aggregation states of cytochrome C molecules and it was considered that the peak at 340.0 nm was attributed to the monomer and peak at 304.0 nm was due to the dimmer or oligomers. When urea was added into cytochrome C solution in which both monomer and dimmer or oligomers exist, cytochrome C molecules do not denature in the range of the specific concentrations of urea. The concentration of monomer of cytochrome C molecules increased and that of aggregation slates decreased by adding urea, Therefore, the synchronous fluorescence spectroscopy can be used to identify monomer and aggregation states of cytochrome C molecules.
Resumo:
Two M(n+)-2-(5-bromo-2-pyridylazo)-5-diethylaminophenol systems for the simultaneous determination of the valence states of Cr and Fe using factor analysis were studied. (1) At pH 4.0, Cr(III) and Cr(VI) react with the reagent to form stable complexes and a slight difference in the wavelengths of maximum absorption (lambda(max.)) between the two complexes is observed when the sodium lauryl sulfate, which also acts as a solubilizing and sensitizing agent, is added, viz., 590 nm for Cr(III) and 593 nm for Cr(VI) complexes. (2) In the presence of ethanol, both Fe(II) and Fe(III) form 1:2 complexes with the reagent at pH 2.5-3.5 and the lambda(max.) of the Fe(II) and Fe(III) complexes is at 557 and 592 nm, respectively. In the target transformation factor analysis, the K coefficients calculated from the standard mixtures by classical least-squares analysis and a non-zero intercept added to each wavelength are used as the target vector instead of the pure component standards; this can decrease the analysis errors introduced by the interaction between the two species and by deviations from Beer's law.
Resumo:
The cold-water event along the southeast coast of the United States in the summer of 2003 is studied using satellite data combined with in situ observations. The analysis suggests that the cooling is produced by wind-driven coastal upwelling, which breaks the thermocline barrier in the summer of 2003. The strong and persistent southwesterly winds in the summer of 2003 play an important role of lifting the bottom isotherms up to the surface and away from the coast, generating persistent surface cooling in July-August 2003. Once the thermocline barrier is broken, the stratification in the nearshore region is weakened substantially, allowing further coastal cooling of large magnitudes by episodic southerly wind bursts or passage of coastally trapped waves at periods of a few days. These short-period winds or waves would otherwise have no effects on the surface temperature because of the strong thermocline barrier in summer if not for the low-frequency cooling produced by the persistent southwesterly winds.
Resumo:
Using heterogeneous vegetation in alpine grassland through grazing is a necessary component of deintensification of livestock systems and conservation of natural environments. However, better understanding of the dynamics of animal feeding behaviour would improve pasture and livestock grazing managements, particularly in the early part of the spring season when forage is scarce. The changes in behaviour may improve the use of poor pastures. Then, enhancing management practices may conserve pasture and improve animal productivity. Grazing behaviour over 24 In periods by yaks in different physiological states (lactating, dry and replacement heifers) was recorded in the early, dry and later, germinating period of the spring season. Under conditions of inadequate forage, the physiological state of yaks was not the primary factor affecting their grazing and ruminating behaviour. Forage and sward state affected yaks' grazing and ruminating behaviour to a greater extent. Generally, yaks had higher intake and spent more time grazing and ruminating during the later part of the spring season, following germination of forage, than during the earlier dry part of the season. However, the live weight of yaks was less during pasture germination than during the early dry part of the season because the herbage mass is low, and the yaks have to expend much energy to seek feed at this particular time. (c) 2007 Elsevier B.V. All rights reserved.