964 resultados para mesh: Models, Theoretical
Resumo:
We investigated the effect of an extract from a helminth (Ascaris suum) in zymosan-induced arthritis (ZYA) or collagen-induced arthritis (CIA). Rats and mice, respectively, received 1 mg and 0.1 mg zymosan intra-articularly (i.a.). Test groups received an A. suum extract either per os (p.o.) or intraperitoneally (i.p.) 30 min prior to i.a. zymosan. Controls received saline. Hypernociception was measured using the articular incapacitation test. Cell influx, nitrite, and cytokine levels were assessed in joint exudates. The synovia and distal femoral extremities were used for histopathology. Cartilage damage was assessed through determining glycosaminoglycan (GAG) content. DBA/1J mice were subjected to CIA. The test group received A. suum extract i.p. 1 day after CIA became clinically detectable. Clinical severity and hypernociception were assessed daily. Neutrophil influx was determined using myeloperoxidase activity. The A. suum extract, either i.p. or p.o., significantly and dose-dependently inhibited cell influx and hypernociception in ZYA in addition to reducing GAG loss and ameliorating synovitis. The A. suum extract reduced i.a. levels of NO, interleukin-1 beta (IL-1 beta), and IL-10 but not tumor necrosis factor alpha (TNF-alpha) in rats subjected to ZYA while reducing i.a. IL-10, but not IL-1 beta or TNIT-alpha, levels in mice. Clinically, mice subjected to CIA treated with the A. suum extract had less severe arthritis. Hypernociception, myeloperoxidase activity, and synovitis severity were significantly reduced. These data show that a helminth extract given p.o. protects from arthritis severity in two classical arthritis models. This A. suum effect is species independent and functions orally and parenterally. The results show clinical and structural benefits when A. suum extract is given either prophylactically or therapeutically.
Resumo:
The effects of microinjection of the nitric oxide (NO) precursor L-arginine (L-Arg), the NO synthase (NOS) inhibitors N-methyl-L-arginine (L-NAME) and 7-nitroindazole (7-NI), and the cyclic guanosine 3`,5`-monophosphate (cGMP) analog 8-Br-cGMP into the dorsal raphe nucleus (DRN) were assessed in rats using the elevated plus maze (EPM) and the forced swim test (FST). L-Arg (100 and 200 nmol) produced an anxiolytic-like effect in the EPM. 8-Br-cGMP (25 and 50 nmol) dose-dependently increased locomotor activity. In the FST, antidepressant-like effects were produced by L-Arg (50 and 100 nmol) and 8-Br-cGMP (12.5 and 25 nmol). Dual effects were observed with NOS inhibitors L-NAME and 7-NI in both the EPM and FST. While low doses of L-NAME (25 nmol) or 7-NI (1 nmol) induced a selective increase in EPM open arm exploration and a decrease in immobility time in the FST, high doses (L-NAME 400 nmol, 7-NI 10 nmol) decreased locomotor activity. These results show that interference with NO-mediated neurotransmission in the DRN induced significant and complex motor and emotional effects. Further studies are needed to elucidate the mechanisms involved in these effects. (C) 2007 Elsevier Inc. All rights reserved.
Resumo:
To study and characterize the in vivo effect of the lectin from Luetzelburgia auriculata seed on acute inflammation models. The lectin was purified from the crude saline extract by affinity chromatography on a guar-gum matrix. Native, heat-treated, and digested lectin was evaluated for anti-inflammatory activity by using peritonitis and paw edema models. The anti-inflammatory activity was characterized by intravital microscopy, nitric oxide production, and myeloperoxidase activity. The lectin exhibited anti-inflammatory activity (2 mg/kg) on both models, reducing local myeloperoxidase activity. Galactose or heat treatment (100A degrees C, 10 min) reduced anti-inflammatory action. Anti-inflammation involves the inhibition of adhesion and rolling of leukocytes along with augmentation of nitric oxide in serum. The lectin inhibited the edematogenic effect of histamine and prostaglandins (PGE2) but did not alter the chemoattractant effect of IL-8. The results indicate that this lectin is a potent anti-inflammatory molecule. Its effects engage diverse modulatory events.
Resumo:
Records of 18,770 Nelore animals, born from 1975 to 2002, in 8 herds participating in the Nelore Cattle Breeding Program, were analyzed to estimate genetic parameters for mature BW. The mature BW were analyzed as a single BW taken closest to 4.5 yr of age for each cow in the data file, considering BW starting from 2 (W2Y_S), 3 (W3Y_S), or 4 (W4Y_S) yr of age or as repeated records, including all BW starting from 2 (W2Y_R), 3 (W3Y_R), or 4 (W4Y_R) yr of age. The variance components were estimated by restricted maximum likelihood, fitting univariate and bivariate animal models, including weaning weight. The heritability estimates were 0.29, 0.34, 0.36, 0.41, 0.44, and 0.46 for W2Y_S, W3Y_S, W4Y_S, W2Y_R, W3Y_R, and W4Y_R, respectively. The repeatability estimates for W2Y_R, W3Y_R, and W4Y_R were 0.59, 0.64, and 0.72, respectively. Larger accuracy values associated with the EBV were obtained in the repeated records models. The results indicated the bivariate repeated records model as the most appropriate for analyzing mature BW.
Resumo:
Objectives To evaluate the presence of false flow three-dimensional (3D) power Doppler signals in `flow-free` models. Methods 3D power Doppler datasets were acquired from three different flow-free phantoms (muscle, air and water) with two different transducers and Virtual Organ Computer-aided AnaLysis was used to generate a sphere that was serially applied through the 3D dataset. The vascularization flow index was used to compare artifactual signals at different depths (from 0 to 6 cm) within the different phantoms and at different gain and pulse repetition frequency (PR F) settings. Results Artifactual Doppler signals were seen in all phantoms despite these being flow-free. The pattern was very similar and the degree of artifact appeared to be dependent on the gain and distance from the transducer. False signals were more evident in the far field and increased as the gain was increased, with false signals first appearing with a gain of 1 dB in the air and muscle phantoms. False signals were seen at a lower gain with the water phantom (-15 dB) and these were associated with vertical lines of Doppler artifact that were related to PRF, and disappeared when reflections were attenuated. Conclusions Artifactual Doppler signals are seen in flow-free phantoms and are related to the gain settings and the distance from the transducer. In the in-vivo situation, the lowest gain settings that allow the detection of blood flow and adequate definition of vessel architecture should be used, which invariably means using a setting near or below the middle of the range available. Additionally, observers should be aware of vertical lines when evaluating cystic or liquid-containing structures. Copyright (C) 2010 ISUOC. Published by John Wiley & Sons, Ltd.
Resumo:
Evidence from animal models of anxiety has led to the hypothesis that serotonin enhances inhibitory avoidance (related to anxiety) in the forebrain, but inhibits one-way escape (panic) in the midbrain periaqueductal gray (PAG). Stressing the difference between these emotions, neuroendocrinological results indicate that the hypothalamic-pituitary-adrenal axis is activated by anticipatory anxiety, but not by panic attack nor by electrical stimulation of the rat PAG. Functional neuroimaging has shown activation of the insula and upper brain stem (including PAG), as well as deactivation of the anterior cingulated cortex (ACC) during experimental panic attacks. Voxel-based morphometric analysis of brain magnetic resonance images has shown a grey matter volume increase in the insula and upper brain stem, and a decrease in the ACC of panic patients at rest, as compared to healthy controls. The insula and the ACC detect interoceptive stimuli, which are overestimated by panic patients. It is suggested that these brain areas and the PAG are involved in the pathophysiology of panic disorder. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The afferent nerves of the cornea and conjunctiva, efferent nerves of the lacrimal gland, and the lacrimal gland are a functional unit that works cooperatively to produce the aqueous component of tears. A decrease in the lacrimal gland secretory function can lead to dry eye disease. Because aging is a risk factor for dry eye disease, study of the changes in the function of the lacrimal gland functional unit with age is important for developing treatments to prevent dry eye disease. No one mechanism is known to induce the changes that occur with aging, although multiple different mechanisms have been associated with aging. These fall into two theoretical categories: programmed theories of aging (immunological, genetic, apoptotic, and neuroendocrine) and error theories of aging (protein alteration, somatic mutation, etc). Lacrimal glands undergo structural and functional alteration with increasing age. In mouse models of aging, it has been shown that neural stimulation of protein secretion is an early target of aging, accompanied by an increase in mast cells and lipofuscin accumulation. Hyperglycemia and increased lymphocytic infiltration can contribute to this loss of function at older ages. These findings suggest that an increase in oxidative stress may play a role in the loss of lacrimal gland function with age. For the afferent and efferent neural components of the lacrimal gland functional unit, immune or inflammatory mediated decrease in nerve function could contribute to loss of lacrimal gland secretion with age. More research in this area is critically needed.
Resumo:
Humans and mice with loss-of-function mutations of the genes encoding kisspeptins (Kiss1) or kisspeptin receptor (Kiss1r) are infertile due to hypogonadotropic hypogonadism. Within the hypothalamus, Kiss1 mRNA is expressed in the anteroventral periventricular nucleus (AVPV) and the arcuate nucleus (Arc). In order to better study the different populations of kisspeptin cells we generated Kiss1-Cre transgenic mice. We obtained one line with Cre activity specifically within Kiss1 neurons (line J2-4), as assessed by generating mice with Cre-dependent expression of green fluorescent protein or beta-galactosidase. Also, we demonstrated Kiss1 expression in the cerebral cortex and confirmed previous data showing Kiss1 mRNA in the medial nucleus of amygdala and anterodorsal preoptic nucleus. Kiss1 neurons were more concentrated towards the caudal levels of the Arc and higher leptin-responsivity was observed in the most caudal population of Arc Kiss1 neurons. No evidence for direct action of leptin in AVPV Kiss1 neurons was observed. Me lanocortin fibers innervated subsets of Kiss1 neurons of the preoptic area and Arc, and both populations expressed melanocortin receptors type 4 (MC4R). Specifically in the preoptic area, 18-28% of Kiss1 neurons expressed MC4R. In the Arc, 90% of Kiss1 neurons were glutamatergic, 50% of which also were GABAergic. In the AVPV, 20% of Kiss1 neurons were glutamatergic whereas 75% were GABAergic. The differences observed between the Kiss1 neurons in the preoptic area and the Arc likely represent neuronal evidence for their differential roles in metabolism and reproduction. (C) 2011 IBRO. Published by Elsevier Ltd. All rights reserved.