862 resultados para membrane characterisation
Resumo:
The improvements obtained on cooling atmospheric remote-sensing instruments for space flight applications has promoted research in characterization of the necessary optical filters. By modelling the effects of temperature on the dispersive spectrum of some constituent thin film materials, the cooled performance can be simulated and compared. multilayer filter designs with the measured spectra from actual filters. Two actual filters are discussed, for the 7µm region, one a composite cut-on/cut-off design of 13% HBW and the other an integral narrowband design of 4% HBW.
Resumo:
The EfeM protein is a component of the putative EfeUOBM iron-transporter of Pseudomonas syringae pathovar syringae and is thought to act as a periplasmic, ferrous-iron binding protein. It contains a signal peptide of 34 amino acid residues and a C-terminal 'Peptidase_M75' domain of 251 residues. The C-terminal domain contains a highly conserved 'HXXE' motif thought to act as part of a divalent cation-binding site. In this work, the gene (efeM or 'Psyr_3370') encoding EfeM was cloned and over-expressed in Escherichia coli, and the mature protein was purified from the periplasm. Mass spectrometry confirmed the identity of the protein (M(W) 27,772Da). Circular dichroism spectroscopy of EfeM indicated a mainly alpha-helical structure, consistent with bioinformatic predictions. Purified EfeM was crystallised by hanging-drop vapor diffusion to give needle-shaped crystals that diffracted to a resolution of 1.6A. This is the first molecular study of a peptidase M75 domain with a presumed iron transport role.
Resumo:
This study describes the discovery and characterisation of a novel aminopeptidase A from the venom of B. g. rhinoceros and highlights its potential biological importance. Similar to mammalian aminopeptidases, rhiminopeptidase A might be capable of playing roles in altering the blood pressure and brain function of victims. Furthermore, it could have additional effects on the biological functions of other host proteins by cleaving their N-terminal amino acids. This study points towards the importance of complete analysis of individual components of snake venom in order to develop effective therapies for snake bites.
Resumo:
Background: Serine proteases are a major component of viper venoms and are thought to disrupt several distinct elements of the blood coagulation system of envenomed victims. A detailed understanding of the functions of these enzymes is important both for acquiring a fuller understanding of the pathology of envenoming and because these venom proteins have shown potential in treating blood coagulation disorders. Methodology/Principal Findings: In this study a novel, highly abundant serine protease, which we have named rhinocerase, has been isolated and characterised from the venom of Bitis gabonica rhinoceros using liquid phase isoelectric focusing and gel filtration. Like many viper venom serine proteases, this enzyme is glycosylated; the estimated molecular mass of the native enzyme is approximately 36kDa, which reduces to 31kDa after deglycosylation. The partial amino acid sequence shows similarity to other viper venom serine proteases, but is clearly distinct from the sequence of the only other sequenced serine protease from Bitis gabonica. Other viper venom serine proteases have been shown to exert distinct biological effects, and our preliminary functional characterization of rhinocerase suggest it to be multifunctional. It is capable of degrading α and β chains of fibrinogen, dissolving plasma clots and of hydrolysing a kallikrein substrate. Conclusions/Significance: A novel multifunctional viper venom serine protease has been isolated and characterised. The activities of the enzyme are consistent with the known in vivo effects of Bitis gabonica envenoming, including bleeding disorders, clotting disorders and hypotension. This study will form the basis for future research to understand the mechanisms of serine protease action, and examine the potential for rhinocerase to be used clinically to reduce the risk of human haemostatic disorders such as heart attacks and strokes.
Resumo:
Under the multipath conditions of terrestrial television transmission, ghost carriers cause additive information to be generated by the VSB filter within the television receiver. By analysis of this a priori effect of the VSB filter under a ghosted condition the inphase and phase quadrature detected video signals are defined. Derived from these results, a new algorithm based upon correlation techniques is presented which finds the characteristics of the amplitude and delay of individual ghosts. These characteristics are then passed to a deterministic deghoster to minimise ghost effects.
Resumo:
In situ analysis has become increasingly important for contaminated land investigation and remediation. At present, portable techniques are used mainly as scanning tools to assess the spread and magnitude of the contamination, and are an adjunct to conventional laboratory analyses. A site in Cornwall, containing naturally occurring radioactive material (NORM), provided an opportunity for Reading University PhD student Anna Kutner to compare analytical data collected in situ with data generated by laboratory-based methods. The preliminary results in this paper extend the author‟s poster presentation at last September‟s GeoSpec2010 conference held in Lancaster.
Resumo:
In membrane distillation in a conventional membrane module, the enthalpies of vaporisation and condensation are supplied and removed by changes in the temperatures of the feed and permeate streams, respectively. Less than 5% of the feed can be distilled in a single pass, because the potential changes in the enthalpies of the liquid streams are much smaller than the enthalpy of vaporisation. Furthermore, the driving force for mass transfer reduces as the feed stream temperature and vapour pressure fall during distillation. These restrictions can be avoided if the enthalpy of vaporisation is uncoupled from the heat capacities of the feed and permeate streams. A specified distillation can then be effected continuously in a single module. Calculations are presented which estimate the performance of a flat plate unit in which the enthalpy of distillation is supplied and removed by the condensing and boiling of thermal fluids in separate circuits, and the imposed temperature difference is independent of position. Because the mass flux through the membrane is dependent on vapour pressure, membrane distillation is suited to applications with a high membrane temperature. The maximum mass flux in the proposed module geometry is predicted to be 30 kg/m2 per h at atmospheric pressure when the membrane temperature is 65°C. Operation at higher membrane temperatures is predicted to raise the mass flux, for example to 85 kg/m2 per h at a membrane temperature of 100°C. This would require pressurisation to 20 bar to prevent boiling at the heating plate of the feed channel. Pre-pressurisation of the membrane pores and control of the dissolved gas concentrations in the feed and the recyled permeate should be investigated as a means to achieve high temperature membrane distillation without pore penetration and wetting.
Resumo:
This review looks at the work carried out over the past 15 years on membrane distillation and reports the conditions utilized for research. The process is still used mainly at the laboratory scale, but a few pilot plants have been built across the world, mostly for desalination and the production of potable water. Studies into membrane distillation have been concerned with the effect of mass transfer, heat transfer, and stirring rate, but the most important effect that has to be considered with this process is temperature polarization. A section on temperature polarization and the effect of boundary layers is included in this review.
Resumo:
This paper concerns the modeling of membrane distillation. The model developed has been used to predict permeate fluxes using different initial operating conditions. PVDF and PTFE membranes were successfully used in a flat plate module to experimentally confirm the theoretical results. The correlation between theory and experiment was close for both membranes. The PTFE membranes produced higher fluxes than PVDF. A Versapor membrane was also used for this work. This membrane is a composite, with a thin porous layer on a support layer. It was found not to be suitable for membrane distillation. A comparison of the heat flux was also carried out. Again, there was good correlation between theory and experiment
Resumo:
This review looks at the work carried out over the past 15 years on membrane distillation and reports the conditions utilized for research. The process is still used mainly at the laboratory scale, but a few pilot plants have been built across the world, mostly for desalination and the production of potable water. Studies into membrane distillation have been concerned with the effect of mass transfer, heat transfer, and stirring rate, but the most important effect that has to be considered with this process is temperature polarization. A section on temperature polarization and the effect of boundary layers is included in this review.