986 resultados para material failure
Resumo:
In this paper, discussions are focused on the growth of a nucleated void in a viscoelastic material. The in situ tensile tests of specimens made of high-density polyethylene, filled with spherical glass beads (HDPE/GB) are carried out under SEM. The experimental result indicates that the microvoid nucleation is induced by the partially interfacial debonding of particles. By means of the Laplace transform and the Eshelby's equivalent inclusion method, a new analytical expression of the void strain at different nucleation times is derived. It can be seen that the strain of the nucleated void depends not only on the remote strain history, but also on the nucleation time. This expression is also illustrated by numerical examples, and is found to be of great usefulness in the study of damage evolution in viscoelastic materials.
Resumo:
This paper first presents a stochastic structural model to describe the random geometrical features of rock and soil aggregates. The stochastic structural model uses mixture ratio, rock size and rock shape to construct the microstructures of aggregates,and introduces two types of structural elements (block element and jointed element) and three types of material elements (rock element, soil element, and weaker jointed element)for this microstructure. Then, continuum-based discrete element method is used to study the deformation and failure mechanism of rock and soil aggregate through a series of loading tests. It is found that the stress-strain curve of rock and soil aggregates is nonlinear, and the failure is usually initialized from weaker jointed elements. Finally, some factors such as mixture ratio, rock size and rock shape are studied in detail. The numerical results are in good agreement with in situ test. Therefore, current model is effective for simulating the mechanical behaviors of rock and soil aggregates.
Resumo:
The dynamic response of a finite crack in an unbounded Functionally Graded Material (FGM) subjected to an antiplane shear loading is studied in this paper. The variation of the shear modulus of the functionally graded material is modeled by a quadratic increase along the direction perpendicular to the crack surface. The dynamic stress intensity factor is extracted from the asymptotic expansion of the stresses around the crack tip in the Laplace transform plane and obtained in the time domain by a numerical Laplace inversion technique. The influence of graded material property on the dynamic intensity factor is investigated. It is observed that the magnitude of dynamic stress intensity factor for a finite crack in such a functionally graded material is less than in the homogeneous material with a property identical to that of the FGM crack plane.
Resumo:
The creep response of metallic foam sandwich beams in 3-point bend is investigated numerically for the case of a metallic foam core and two steel faces. The face sheets are treated as elastic, while the foam core is modeled by a viscoplastic extension of the Deshpande-Fleck yield surface. This power-law creeping constitutive law has been implemented within the commercial finite element code ABAQUS. It is found that the beams creep by a variety of competing mechanisms, depending upon the choice of material properties and the geometric parameters. A failure map is constructed and effect of rate dependence on the load-deflection curves is quantified, and compared against the available experimental data.
Resumo:
A Dugdale-type cohesive zone model is used to predict the mode I crack growth resistance (R-curve) of metallic foams, with the fracture process characterized by an idealized traction-separation law that relates the crack surface traction to crack opening displacement. A quadratic yield function, involving the von Mises effective stress and mean stress, is used to account for the plastic compressibility of metallic foams. Finite element calculations are performed for the crack growth resistance under small scale yielding and small scale bridging in plane strain, with K-field boundary conditions. The following effects upon the fracture process are quantified: material hardening, bridging strength, T-stress (the non-singular stress acting parallel to the crack plane), and the shape of yield surface. To study the failure behaviour and notch sensitivity of metallic foams in the presence of large scale yielding, a study is made for panels embedded with either a centre-crack or an open hole and subjected to tensile stressing. For the centre-cracked panel, a transition crack size is predicted for which the fracture response switches from net section yielding to elastic-brittle fracture. Likewise, for a panel containing a centre-hole, a transition hole diameter exists for which the fracture response switches from net section yielding to a local maximum stress criterion at the edge of the hole.
Resumo:
We demonstrate a parameter extraction algorithm based on a theoretical transfer function, which takes into account a converging THz beam. Using this, we successfully extract material parameters from data obtained for a quartz sample with a THz time domain spectrometer. © 2010 IEEE.
Resumo:
The tensile deformation and failure of polymer bonded explosives (PBXs), a particulate composite, is studied in this paper. Two HMX-based PBXs with different binder were selected for study. A diametric compression test, in which a disc-shaped specimen is loaded diametrically, was chosen to generate tensile failure in the materials. The quasi-static tensile properties and the tensile creep properties were studied by using conventional displacement transducers to measure the lateral strain along the horizontal diameter. The whole-field in-plane creep deformation was measured by using the technique of high resolution moire´ interferometry. Real time microscopic examination was conducted to monitor the process of deformation and failure of PBXs by using a scanning electron microscope equipped with a loading stage. A manifold method (MM) was used to simulate the deformation and failure of PBX samples under the diametric compression test, including the crack initiation, crack propagation and final cleavage fracture. The mechanisms of deformation and failure of PBXs under diametric compression were analyzed. The diametric compression test and the techniques developed in this research have proven to be applicable to the study of tensile properties of PBXs.
Resumo:
介绍脉冲X光机和医用X光机的特性,应用这两种设备进行一系列饱和砂土的冲击加载实验。利用医用X光机拍摄到了饱和砂土在冲击载荷作用下产生的横断裂缝、纵向排水通道以及密实沉降的照片,得到了横断裂缝和纵向排水通道的出现规律,从而为研究饱和砂土冲击液化后结构破坏与密实沉降的机理提供了一种实验观测手段。
Resumo:
Diamond-like carbon (DLC) coatings were deposited on to silicon, glass and metal substrates, using an rf-plasma enhanced chemical vapour deposition (rf-PECVD) process. The resultant film properties were evaluated in respect of material and interfacial property control, based on bias voltage variation and the introduction of inert (He and Ar) and reactive (N2) diluting gases in a CH4 plasma. The analysis techniques used to assess the material properties of the films included AFM, EELS, RBS/ERDA, spectroscopic, electrical, stress, microhardness, and adhesion. These were correlated to the tribological performance of the coatings using wear measurements. The most important observation is that He dilution (>90%) promotes enhanced adhesion with respect to all substrate material studies. Coatings typically exhibit a microhardness of the order of 10-20 GPa in films 0.1
Resumo:
The process of damage evolution concerns various scales, from micro- to macroscopic. How to characterize the trans-scale nature of the process is on the challenging frontiers of solid mechanics. In this paper, a closed trans-scale formulation of damage evolution based on statistical microdamage mechanics is presented. As a case study, the damage evolution in spallation is analyzed with the formulation. Scaling of the formulation reveals that the following dimensionless numbers: reduced Mach number M, damage number S, stress wave Fourier number P, intrinsic Deborah number D*, and the imposed Deborah number De*, govern the whole process of deformation and damage evolution. The evaluation of P and the estimation of temperature increase show that the energy equation can be ignored as the first approximation in the case of spallation. Hence, apart from the two conventional macroscopic parameters: the reduced Mach number M and damage number S, the damage evolution in spallation is mainly governed by two microdamage-relevant parameters: the Deborah numbers D* and De*. Higher nucleation and growth rates of microdamage accelerate damage evolution, and result in higher damage in the target plate. In addition, the mere variation in nucleation rate does not change the spatial distribution of damage or form localized rupture, while the increase of microdamage growth rate localizes the damage distribution in the target plate, which can be characterized by the imposed Deborah number De*.
Resumo:
Thermal failure of SiC particulate-reinforced 6061 aluminum alloy composites induced by both laser thermal shock and mechanical load has been investigated. The specimens with a single-edge notch were mechanically polished to 0.25 mm in thickness. The notched-tip region of the specimen is subjected to laser beam rapid heating. In the test, a pulsed Nd:glass laser beam is used with duration 1.0 ms or 250 mu s, intensity 15 or 70 kW/cm(2), and spot size 5.0 mm in diameter. Threshold intensity was tested and fracture behavior was studied. The crack-tip process zone development and the microcrack formation were macroscopically and microscopically observed. It was found that in these materials, the initial crack occurred in the notched-tip region, wherein the initial crack was induced by either void nucleation, growth, and subsequent coalescence of the matrix materials or separation of the SiC particulate-matrix interface. It was further found that the process of the crack propagation occurred by the fracture of the SiC particulates.
Resumo:
An n degree-of-freedom Hamiltonian system with r (1¡r¡n) independent 0rst integrals which are in involution is calledpartially integrable Hamiltonian system. A partially integrable Hamiltonian system subject to light dampings andweak stochastic excitations is called quasi-partially integrable Hamiltonian system. In the present paper, the procedures for studying the 0rst-passage failure and its feedback minimization of quasi-partially integrable Hamiltonian systems are proposed. First, the stochastic averaging methodfor quasi-partially integrable Hamiltonian systems is brie4y reviewed. Then, basedon the averagedIt ˆo equations, a backwardKolmogorov equation governing the conditional reliability function, a set of generalized Pontryagin equations governing the conditional moments of 0rst-passage time and their boundary and initial conditions are established. After that, the dynamical programming equations and their associated boundary and 0nal time conditions for the control problems of maximization of reliability andof maximization of mean 0rst-passage time are formulated. The relationship between the backwardKolmogorov equation andthe dynamical programming equation for reliability maximization, andthat between the Pontryagin equation andthe dynamical programming equation for maximization of mean 0rst-passage time are discussed. Finally, an example is worked out to illustrate the proposed procedures and the e9ectiveness of feedback control in reducing 0rst-passage failure.