911 resultados para lower-semicontinuity


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The chemical and biochemical processes associated with the filtration of rainwater through soils, a step in groundwater recharge, were investigated. Under simulated climatic conditions in the laboratory, undisturbed soil columns of partly loamy sands, sandy soils and loess were run as lysimeters. A series of extraction procedures was carried out to determine solid matter in unaltered rock materials and in soil horizons. Drainage water and moisture movement in the columns were analysed and traced respectively. The behaviour of soluble humic substance was investigated by percolation and suspension experiments. The development of seepage-water in the unsaturated zone is closely associated with the soil genetic processes. Determining autonomous chemical and physical parameters are mineral composition and grain size distribution in the original unconsolidated host rock and prevailing climatic conditions. They influence biological activity and transport of solids, dissolved matter and gases in the unsaturated zone. Humic substances, either as amorphous solid matter or as soluble humic acids play a part in diverse sorption, solution and precipitation processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In three typical sandy soils of Northern Germany the mobility of radioactive fission products of technetium, iodine, ruthenium and zirconium have been investigated in dependence of the hydrodynamic and physico-chemical soil properties. The laboratory experiments, which simulated fall-out events, used soil columns (1 m length, 30 cm diameter) taken as undisturbed as possible. By measurements of the breakthrough curves in the percolate and of the depth distribution of radionuclides in the soil columns after 6 months the average transport velocity could be determined. These values could be compared with the average water velocity measured by 3H tagging. Three qualitative mobility relations were observed: Ranker: Tc > Ru > I > Zr; Podsol: Tc > Ru > I > Zr; Brown forest soil: Tc = Ru > I > Zr. Relations between some physico-chemical soil properties and the retardation of radionuclides due to adsorption could be observed (eg. retardation of iodine and technetium by organic substances). The average retardation factors of the radionuclides and the hydrodynamic soil parameters are used in a model which gives a quantitative assessment of the hazard of groundwater contamination by a fall-out event in areas covered with comparable soils.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Profiles of Mo/total organic carbon (TOC) through the Lower Toarcian black shales of the Cleveland Basin, Yorkshire, United Kingdom, and the Posidonia shale of Germany and Switzerland reveal water mass restriction during the interval from late tenuicostatum Zone times to early bifrons Zone times, times which include that of the putative Early Toarcian oceanic anoxic event. The degree of restriction is revealed by crossplots of Mo and TOC concentrations for the Cleveland Basin, which define two linear arrays with regression slopes (ppm/%) of 0.5 and 17. The slope of 0.5 applies to sediment from the upper semicelatum and exaratum Subzones. This value, which is one tenth of that for modern sediments from the Black Sea (Mo/TOC regression slope 4.5), reveals that water mass restriction during this interval was around 10 times more severe than in the modern Black Sea; the renewal frequency of the water mass was between 4 and 40 ka. The Mo/TOC regression slope of 17 applies to the overlying falciferum and commune subzones: the value shows that restriction in this interval was less severe and that the renewal frequency of the water mass was between 10 and 130 years. The more restricted of the two intervals has been termed the Early Toarcian oceanic anoxic event but is shown to be an event caused by basin restriction local to NW Europe. Crossplots of Re, Os, and Mo against TOC show similar trends of increasing element concentration with increase in TOC but with differing slopes. Together with modeling of 187Os/188Os and d98Mo, the element/TOC trends show that drawdown of Re, Os, and Mo was essentially complete during upper semicelatum and exaratum Subzone times (Mo/TOC regression slope of 0.5). Drawdown sensitized the restricted water mass to isotopic change forced by freshwater mixing so that continental inputs of Re, Os, and Mo, via a low-salinity surface layer, created isotopic excursions of up to 1.3 per mil in d98Mo and up to 0.6 per mil for 187Os/188Os. Restriction thereby compromises attempts to date Toarcian black shales, and possibly all black shales, using Re-Os chronology and introduces a confounding influence in the attempts to use d98Mo and initial 187Os/188Os for palaeo-oceanographic interpretation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sediments recovered during Ocean Drilling Program (ODP) Leg 123 from the Argo Abyssal Plain (AAP) consist largely of turbidites derived from the adjacent Australian continental margin. The oldest abundant turbidites are Valanginian-Aptian in age and have a mixed (smarl) composition; they contain subequal amounts of calcareous and siliceous biogenic components, as well as clay and lesser quartz. Most are thin-bedded, fine sand- to mud-sized, and best described by Stow and Piper's model (1984) for fine-grained biogenic turbidites. Thicker (to 3 m), coarser-grained (medium-to-coarse sand-sized) turbidites fit Bouma's model (1962) for sandy turbidites; these generally are base-cut-out (BCDE, BDE) sequences, with B-division parallel lamination as the dominant structure. Parallel laminae most commonly concentrate quartz and/or calcispheres vs. lithic clasts or clay, but distinctive millimeter- to centimeter-thick, radiolarian-rich laminae occur in both fine- and coarse-grained Valanginian-Hauterivian turbidites. AAP turbidites were derived from relatively deep parts of the continental margin (outer shelf, slope, or rise) that lay below the photic zone, but above the calcite compensation depth (CCD). Biogenic components are largely pelagic (calcispheres, foraminifers, radiolarians, nannofossils); lesser benthic foraminifers are characteristic of deep-water (abyssal to bathyal) environments. Abundant nonbiogenic components are mostly clay and clay clasts; smectite is the dominant clay species, and indicates a volcanogenic provenance, most likely the Triassic-Jurassic volcanic suite exposed along the northern Exmouth Plateau. Lower Cretaceous smarl turbidites were generated during eustatic lowstands and may have reached the abyssal plain via Swan Canyon, a submarine canyon thought to have formed during the Late Jurassic. In contrast to younger AAP turbidites, however, Lower Cretaceous turbidites are relatively fine-grained and do not contain notably older reworked fossils. Early in its history, the northwest Australian margin provided mainly contemporaneous slope sediment to the AAP; marginal basins adjacent to the continent trapped most terrigenous detritus, and pronounced canyon incisement did not occur until Late Cretaceous and, especially, Cenozoic time.