887 resultados para loss-of-function


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The phenotype of somatic cells has recently been found to be reversible. Direct reprogramming of one cell type into another has been achieved with transduction and over expression of exogenous defined transcription factors emphasizing their role in specifying cell fate. To discover early and novel endogenous transcription factors that may have a role in adult-derived stem cell acquisition of a cardiomyocyte phenotype, mesenchymal stem cells from human and mouse bone marrow and rat liver were co-cultured with neonatal cardiomyocytes as an in vitro cardiogenic microenvironment. Cell-cell communications develop between the two cell types as early as 24 hrs in co-culture and are required for elaboration of a myocardial phenotype in the stem cells 8-16 days later. These intercellular communications are associated with novel Ca(2+) oscillations in the stem cells that are synchronous with the Ca(2+) transients in adjacent cardiomyocytes and are detected in the stem cells as early as 24-48 hrs in co-culture. Early and significant up-regulation of Ca(2+)-dependent effectors, CAMTA1 and RCAN1 ensues before a myocardial program is activated. CAMTA1 loss-of-function minimizes the activation of the cardiac gene program in the stem cells. While the expression of RCAN1 suggests involvement of the well-characterized calcineurin-NFAT pathway as a response to a Ca(2+) signal, the CAMTA1 up-regulated expression as a response to such a signal in the stem cells was unknown. Cell-cell communications between the stem cells and adjacent cardiomyocytes induce Ca(2+) signals that activate a myocardial gene program in the stem cells via a novel and early Ca(2+)-dependent intermediate, up-regulation of CAMTA1.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lymphomas comprise a diverse group of malignancies derived from immune cells. High throughput sequencing has recently emerged as a powerful and versatile method for analysis of the cancer genome and transcriptome. As these data continue to emerge, the crucial work lies in sorting through the wealth of information to hone in on the critical aspects that will give us a better understanding of biology and new insight for how to treat disease. Finding the important signals within these large data sets is one of the major challenges of next generation sequencing.

In this dissertation, I have developed several complementary strategies to describe the genetic underpinnings of lymphomas. I begin with developing a better method for RNA sequencing that enables strand-specific total RNA sequencing and alternative splicing profiling in the same analysis. I then combine this RNA sequencing technique with whole exome sequencing to better understand the global landscape of aberrations in these diseases. Finally, I use traditional cell and molecular biology techniques to define the consequences of major genetic alterations in lymphoma.

Through this analysis, I find recurrent silencing mutations in the G alpha binding protein GNA13 and associated focal adhesion proteins. I aim to describe how loss-of-function mutations in GNA13 can be oncogenic in the context of germinal center B cell biology. Using in vitro techniques including liquid chromatography-mass spectrometry and knockdown and overexpression of genes in B cell lymphoma cell lines, I determine protein binding partners and downstream effectors of GNA13. I also develop a transgenic mouse model to study the role of GNA13 in the germinal center in vivo to determine effects of GNA13 deletion on germinal center structure and cell migration.

Thus, I have developed complementary approaches that span the spectrum from discovery to context-dependent gene models that afford a better understanding of the biological function of aberrant events and ultimately result in a better understanding of disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Huntington's disease (HD) is a neurodegenerative disease caused by the expansion of a poly-glutamine (poly-Q) stretch in the huntingtin (Htt) protein. Gain-of-function effects of mutant Htt have been extensively investigated as the major driver of neurodegeneration in HD. However, loss-of-function effects of poly-Q mutations recently emerged as potential drivers of disease pathophysiology. Early synaptic problems in the excitatory cortical and striatal connections have been reported in HD, but the role of Htt protein in synaptic connectivity was unknown. Therefore, we investigated the role of Htt in synaptic connectivity in vivo by conditionally silencing Htt in the developing mouse cortex. When cortical Htt function was silenced, cortical and striatal excitatory synapses formed and matured at an accelerated pace through postnatal day 21 (P21). This exuberant synaptic connectivity was lost over time in the cortex, resulting in the deterioration of synapses by 5 weeks. Synaptic decline in the cortex was accompanied with layer- and region-specific reactive gliosis without cell loss. To determine whether the disease-causing poly-Q mutation in Htt affects synapse development, we next investigated the synaptic connectivity in a full-length knock-in mouse model of HD, the zQ175 mouse. Similar to the cortical conditional knock-outs, we found excessive excitatory synapse formation and maturation in the cortices of P21 zQ175, which was lost by 5 weeks. Together, our findings reveal that cortical Htt is required for the correct establishment of cortical and striatal excitatory circuits, and this function of Htt is lost when the mutant Htt is present.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The actin cytoskeleton is a dynamic and complex structure in fission yeast that plays a major function in many cell processes including cellular growth, septa formation, endocytosis and cellular division. Computational studies have shown that Arp2p, which forms part of the Arp2/3 complex, is a potential substrate of NatB acetyltransferase which has specificity for proteins possessing an N-terminal Met-Asp or Met-Glu sequence motif. In arm1- mutants the loss of function of Arm1p, an auxillary subunit required for NatB activity, results in a temperature sensitive phenotype characterized by multiple septa, failure of endocytosis, and the inability to form actin cables. A temperature sensitive mutant of Schizosaccharomyces pombe arp2 gene exhibits a similar phenotype as seen by the formation of improper septa, slow growth, and the delocalization of actin patches. Four expression vectors encoding the open reading frames of arp2 and cdc8 (tropomyosin) were constructed with a modification changing the second residue to a Histidine, believed to mimic the charge distribution of natural acetylation by NatB. Constructs tested in normal yeast strains remained viable and grew normally in the presence of Met-His Arp2p and tropomyosin. Analysis of their ability to suppress the mutant phenotypes of arp2-1 and arm1- mutants is an area of research to be explored in future studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Alpha-1 antitrypsin (A1AT) is a serine anti-protease produced chiefly by the liver. A1AT deficiency is a genetic disorder characterized by serum levels of less than 11 μmol/L and is associated with liver and lung manifestations. The liver disease, which occurs in up to 15% of A1AT-deficient individuals, is a result of toxic gain-of-function mutations in the A1AT gene, which cause the A1AT protein to fold aberrantly and accumulate in the endoplasmic reticulum of hepatocytes. The lung disease is associated with loss-of-function, specifically decreased anti-protease protection on the airway epithelial surface. The so-called 'Z' mutation in A1AT deficiency encodes a glutamic acid-to-lysine substitution at position 342 in A1AT and is the most common A1AT allele associated with disease. Here we review the current understanding of the molecular pathogenesis of A1AT deficiency and the best clinical management protocols. © Springer Science+Business Media B.V. 2008.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recently several different JAK2 exon12 mutations have been identified in V617F negative polycythaemia vera (PV) or idiopathic erythrocytosis (IE) patients. The patients present with erythrocytosis, ligand-independent cell growth and low serum erythropoietin (EPO) levels. Within this group, a deletion of amino acids 542-543 (N542-E543del) of JAK2 is most prevalent. We have previously shown that in the presence of JAK2(V617F), suppressor of cytokine signalling 3 (SOCS3) is unable to negatively regulate EPO signalling and proliferation of V617F-expressing cells. Here we report a PV patient heterozygous for the somatic JAK2(N542-E543del) mutation and a previously unreported germline mutation within the SH2 domain of SOCS3 (F136L). Interestingly, the SOCS3(F136L) mutation was detected in a Japanese myeloproliferative disorder patient cohort at double the frequency of healthy controls. Cells expressing SOCS3(F136L) had markedly elevated EPO-induced proliferation and extended EPO-induced JAK2 phosphorylation. Additionally, compared to wild-type SOCS3, mutant SOCS3 had an extended half-life in the presence of JAK2 and JAK2(N542-E543del). Our findings suggest that this loss-of-function SOCS3 mutation may have contributed to disease onset by causing deregulated JAK2 signalling in the presence of a constitutively active JAK2(N542-E543del) mutant.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Congenital hereditary endothelial dystrophy ( CHED) is a heritable, bilateral corneal dystrophy characterized by corneal opacification and nystagmus. We describe seven different mutations in the SLC4A11 gene in ten families with autosomal recessive CHED. Mutations in SLC4A11, which encodes a membrane-bound sodium-borate cotransporter, cause loss of function of the protein either by blocking its membrane targeting or nonsense-mediated decay.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mutations that result in loss of function of Nod2, an intracellular receptor for bacterial peptidoglycan, are associated with Crohn's disease. Here we found that the E3 ubiquitin ligase Pellino3 was an important mediator in the Nod2 signaling pathway. Pellino3-deficient mice had less induction of cytokines after engagement of Nod2 and had exacerbated disease in various experimental models of colitis. Furthermore, expression of Pellino3 was lower in the colons of patients with Crohn's disease. Pellino3 directly bound to the kinase RIP2 and catalyzed its ubiquitination. Loss of Pellino3 led to attenuation of Nod2-induced ubiquitination of RIP2 and less activation of the transcription factor NF-?B and mitogen-activated protein kinases (MAPKs). Our findings identify RIP2 as a substrate for Pellino3 and Pellino3 as an important mediator in the Nod2 pathway and regulator of intestinal inflammation. © 2013 Nature America, Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Infectious diseases are a leading cause of global human mortality. The use of antimicrobials remains the most common strategy for treatment. However, the isolation of pathogens resistant to virtually all antimicrobials makes it urgent to develop effective therapeutics based on new targets. Here we review a new drug discovery paradigm focusing on identifying and targeting host factors important for infection as well as pathogen determinants involved in disease progression. We summarize innovative strategies which by combining bioinformatics with transcriptomics and chemical genetics have already identified host factors essential for pathogen entry, survival and replication. We describe how the discovery of RNA interference which allows loss-of-function studies has facilitated functional genomic studies in human cells. It is expected that these studies will identify targets to be used as host-directed drug therapy which, together with antimicrobials targeting microbial virulence factors, will efficiently eliminate the invading pathogen.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The glucocorticoid (GC) receptor (GR) and Kruppel-like factor Klf4 are transcription factors that play major roles in skin homeostasis. However, whether these transcription factors cooperate in binding genomic regulatory regions in epidermal keratinocytes was not known. Here, we show that in dexamethasone-treated keratinocytes GR and Klf4 are recruited to genomic regions containing adjacent GR and KLF binding motifs to control transcription of the anti-inflammatory genes Tsc22d3 and Zfp36. GR- and Klf4 loss of function experiments showed total GR but partial Klf4 requirement for full gene induction in response to dexamethasone. In wild type keratinocytes induced to differentiate, GR and Klf4 protein expression increased concomitant with Tsc22d3 and Zfp36 up-regulation. In contrast, GR-deficient cells failed to differentiate or fully induce Klf4, Tsc22d3 and Zfp36 correlating with increased expression of the epithelium-specific Trp63, a known transcriptional repressor of Klf4. The identified transcriptional cooperation between GR and Klf4 may determine cell-type specific regulation and have implications for developing therapies for skin diseases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The adaptor protein-2 sigma subunit (AP2sigma;2) is pivotal for clathrin-mediated endocytosis of plasma membrane constituents such as the calcium-sensing receptor (CaSR). Mutations of the AP2sigma;2 Arg15 residue result in familial hypocalciuric hypercalcaemia type 3 (FHH3), a disorder of extracellular calcium (Ca<inf>o</inf><sup>2+</sup>) homeostasis. To elucidate the role of AP2sigma;2 in Ca<inf>o</inf><sup>2+</sup> regulation, we investigated 65 FHH probands, without other FHH-associated mutations, for AP2sigma;2 mutations, characterized their functional consequences and investigated the genetic mechanisms leading to FHH3. AP2sigma;2 mutations were identified in 17 probands, comprising 5 Arg15Cys, 4 Arg15His and 8 Arg15Leu mutations. A genotype-phenotype correlation was observed with the Arg15Leu mutation leading to marked hypercalcaemia. FHH3 probands harboured additional phenotypes such as cognitive dysfunction. All three FHH3-causing AP2sigma;2 mutations impaired CaSR signal transduction in a dominant-negative manner. Mutational bias was observed at the AP2sigma;2 Arg15 residue as other predicted missense substitutions (Arg15Gly, Arg15Pro and Arg15Ser), which also caused CaSR loss-of-function, were not detected in FHH probands, and these mutations were found to reduce the numbers of CaSR-expressing cells. FHH3 probands had significantly greater serum calcium (sCa) and magnesium (sMg) concentrations with reduced urinary calcium to creatinine clearance ratios (CCCR) in comparison with FHH1 probands with CaSR mutations, and a calculated index of sCa × sMg/100 × CCCR, which was ≥ 5.0, had a diagnostic sensitivity and specificity of 83 and 86%, respectively, for FHH3. Thus, our studies demonstrate AP2sigma;2 mutations to result in a more severe FHH phenotype with genotype-phenotype correlations, and a dominant-negative mechanism of action with mutational bias at the Arg15 residue.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The efficiency of central nervous system remyelination declines with age. This is in part due to an age-associated decline in the phagocytic removal of myelin debris, which contains inhibitors of oligodendrocyte progenitor cell differentiation. In this study, we show that expression of genes involved in the retinoid X receptor pathway are decreased with ageing in both myelin-phagocytosing human monocytes and mouse macrophages using a combination of in vivo and in vitro approaches. Disruption of retinoid X receptor function in young macrophages, using the antagonist HX531, mimics ageing by reducing myelin debris uptake. Macrophage-specific RXRα (Rxra) knockout mice revealed that loss of function in young mice caused delayed myelin debris uptake and slowed remyelination after experimentally-induced demyelination. Alternatively, retinoid X receptor agonists partially restored myelin debris phagocytosis in aged macrophages. The agonist bexarotene, when used in concentrations achievable in human subjects, caused a reversion of the gene expression profile in multiple sclerosis patient monocytes to a more youthful profile and enhanced myelin debris phagocytosis by patient cells. These results reveal the retinoid X receptor pathway as a positive regulator of myelin debris clearance and a key player in the age-related decline in remyelination that may be targeted by available or newly-developed therapeutics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Triple negative (TNBCs) and the closely related Basal-like (BLBCs) breast cancers are a loosely defined collection of cancers with poor clinical outcomes. Both show strong similarities with BRCA1-mutant breast cancers and BRCA1 dysfunction, or 'BRCAness', is observed in a large proportion of sporadic BLBCs. BRCA1 expression and function has been shown in vitro to modulate responses to radiation and chemotherapy. Exploitation of this knowledge in the treatment of BRCA1-mutant patients has had varying degrees of success. This reflects the significant problem of accurately detecting those patients with BRCA1 dysfunction. Moreover, not all BRCA1 mutations/loss of function result in the same histology/pathology or indeed have similar effects in modulating therapeutic responses. Given the poor clinical outcomes and lack of targeted therapy for these subtypes, a better understanding of the biology underlying these diseases is required in order to develop novel therapeutic strategies.We have discovered a consistent NFκB hyperactivity associated with BRCA1 dysfunction as a consequence of increased Reactive Oxygen Species (ROS). This biology is found in a subset of BRCA1-mutant and triple negative breast cancer cases and confers good outcome. The increased NFκB signalling results in an anti-tumour microenvironment which may allow CD8+ cytotoxic T cells to suppress tumour progression. However, tumours lacking this NFκB-driven biology have a more tumour-promoting environment and so are associated with poorer prognosis. Tumour-derived gene expression data and cell line models imply that these tumours may benefit from alternative treatment strategies such as reprogramming the microenvironment and targeting the IGF and AR signalling pathways.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Immunological tolerance, that is, the failure to mount an immune response to an otherwise immunogenic molecule, is one of the fundamental questions in immunology. The fact that lymphocytes express antigen receptors that are generated randomly and have the potential to recognize any conceivable antigen, adds another puzzle to the physiology of immunological tolerance. The other side of the coin, the general absence of immune responses to self antigens, is ensured by a tight regulation and several selection steps during T and B cell differentiation. One of these processes is the differentiation of regulatory T cells (Treg). While developing in the thymus, T cell clones bearing receptors with high affinity/avidity to antigens present at the time of differentiation may be eliminated by apoptosis or, alternatively, express Foxp3 and become Treg. Treg are key players in the regulation of immunological tolerance since humans and mice with complete loss of function variants of this gene develop fatal autoimmune conditions early in life.(...)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

RESUMO: A reprogramação celular permite que uma célula somática seja reprogramada para outra célula diferente através da expressão forçada de factores de transcrição (FTs) específicos de determinada linhagem celular, e constitui uma área de investigação emergente nos últimos anos. As células somáticas podem ser experimentalmente manipuladas de modo a obter células estaminais pluripotentes induzidas (CEPi), ou convertidas directamente noutro tipo de célula somática. Estas descobertas inovadoras oferecem oportunidades promissoras para o desenvolvimento de novas terapias de substituição celular e modelos de doença, funcionando também como ferramentas valiosas para o estudo dos mecanismos moleculares que estabelecem a identidade celular e regulam os processos de desenvolvimento. Existem várias doenças degenerativas hereditárias e adquiridas da retina que causam deficiência visual devido a uma disfunção no tecido de suporte da retina, o epitélio pigmentar da retina (EPR). Uma destas doenças é a Coroideremia (CHM), uma doença hereditária monogénica ligada ao cromossoma X causada por mutações que implicam a perda de função duma proteína com funções importantes na regulação do tráfico intracelular. A CHM é caracterizada pela degenerescência progressiva do EPR, assim como dos foto-receptores e da coróide. Resultados experimentais sugerem que o EPR desempenha um papel importante na patogénese da CHM, o que parece indicar uma possível vantagem terapêutica na substituição do EPR nos doentes com CHM. Por outro lado, existe uma lacuna em termos de modelos in vitro de EPR para estudar a CHM, o que pode explicar o ainda desconhecimento dos mecanismos moleculares que explicam a patogénese desta doença. Assim, este trabalho focou-se principalmente na exploração das potencialidades das técnicas de reprogramação celular no contexto das doenças de degenerescência da retina, em particular no caso da CHM. Células de murganho de estirpe selvagem, bem como células derivadas de um ratinho modelo de knockout condicional de Chm, foram convertidos com sucesso em CEPi recorrendo a um sistema lentiviral induzido que permite a expressão forçada dos 4 factores clássicos de reprogramação, a saber Oct4, Sox2, Klf4 e c-Myc. Estas células mostraram ter equivalência morfológica, molecular e funcional a células estaminais embrionárias (CES). As CEPi obtidas foram seguidamente submetidas a protocolos de diferenciação com o objectivo final de obter células do EPR. Os resultados promissores obtidos revelam a possibilidade de gerar um valioso modelo de EPR-CHM para estudos in vitro. Em alternativa, a conversão directa de linhagens partindo de fibroblastos para obter células do EPR foi também abordada. Uma vasta gama de ferramentas moleculares foi gerada de modo a implementar uma estratégia mediada por FTs-chave, seleccionados devido ao seu papel fundamental no desenvolvimento embrionário e especificação do EPR. Conjuntos de 10 ou menos FTs foram usados para transduzir fibroblastos, que adquiriram morfologia pigmentada e expressão de alguns marcadores específicos do EPR. Adicionalmente, observou-se a activação de regiões promotoras de genes específicos de EPR, indicando que a identidade transcricional das células foi alterada no sentido pretendido. Em conclusão, avanços significativos foram atingidos no sentido da implementação de tecnologias de reprogramação celular já estabelecidas, bem como na concepção de novas estratégias inovadoras. Metodologias de reprogramação, quer para pluripotência, quer via conversão directa, foram aplicadas com o objectivo final de gerar células do EPR. O trabalho aqui descrito abre novos caminhos para o estabelecimento de terapias de substituição celular e, de uma maneira mais directa, levanta a possibilidade de modelar doenças degenerativas da retina com disfunção do EPR numa placa de petri, em particular no caso da CHM.---------------ABSTRACT: Cellular reprogramming is an emerging research field in which a somatic cell is reprogrammed into a different cell type by forcing the expression of lineage-specific transcription factors (TFs). Cellular identities can be manipulated using experimental techniques with the attainment of pluripotency properties and the generation of induced Pluripotent Stem (iPS) cells, or the direct conversion of one somatic cell into another somatic cell type. These pioneering discoveries offer new unprecedented opportunities for the establishment of novel cell-based therapies and disease models, as well as serving as valuable tools for the study of molecular mechanisms governing cell fate establishment and developmental processes. Several retinal degenerative disorders, inherited and acquired, lead to visual impairment due to an underlying dysfunction of the support cells of the retina, the retinal pigment epithelium (RPE). Choroideremia (CHM), an X-linked monogenic disease caused by a loss of function mutation in a key regulator of intracellular trafficking, is characterized by a progressive degeneration of the RPE and other components of the retina, such as the photoreceptors and the choroid. Evidence suggest that RPE plays an important role in CHM pathogenesis, thus implying that regenerative approaches aiming at rescuing RPE function may be of great benefit for CHM patients. Additionally, lack of appropriate in vitro models has contributed to the still poorly-characterized molecular events in the base of CHM degenerative process. Therefore, the main focus of this work was to explore the potential applications of cellular reprogramming technology in the context of RPE-related retinal degenerations. The generation of mouse iPS cells was established and optimized using an inducible lentiviral system to force the expression of the classic set of TFs, namely Oct4, Sox2, Klf4 and c-Myc. Wild-type cells, as well as cells derived from a conditional knockout (KO) mouse model of Chm, were successfully converted into a pluripotent state, that displayed morphology, molecular and functional equivalence to Embryonic Stem (ES) cells. Generated iPS cells were then subjected to differentiation protocols towards the attainment of a RPE cell fate, with promising results highlighting the possibility of generating a valuable Chm-RPE in vitro model. In alternative, direct lineage conversion of fibroblasts into RPE-like cells was also tackled. A TF-mediated approach was implemented after the generation of a panoply of molecular tools needed for such studies. After transduction with pools of 10 or less TFs, selected for their key role on RPE developmental process and specification, fibroblasts acquired a pigmented morphology and expression of some RPE-specific markers. Additionally, promoter regions of RPE-specific genes were activated indicating that the transcriptional identity of the cells was being altered into the pursued cell fate. In conclusion, highly significant progress was made towards the implementation of already established cellular reprogramming technologies, as well as the designing of new innovative ones. Reprogramming into pluripotency and lineage conversion methodologies were applied to ultimately generate RPE cells. These studies open new avenues for the establishment of cell replacement therapies and, more straightforwardly,raise the possibility of modelling retinal degenerations with underlying RPE defects in apetri dish, particularly CHM.