998 resultados para locomotor performance
Resumo:
We report on the application of cold atmospheric-pressure plasmas to modify silica nanoparticles to enhance their compatibility with polymer matrices. Thermally nonequilibrium atmospheric-pressure plasma is generated by a high-voltage radio frequency power source operated in the capacitively coupled mode with helium as the working gas. Compared to the pure polymer and the polymer nanocomposites with untreated SiO2, the plasma-treated SiO2–polymer nanocomposites show higher dielectric breakdown strength and extended endurance under a constant electrical stress. These improvements are attributed to the stronger interactions between the SiO2 nanoparticles and the surrounding polymer matrix after the plasma treatment. Our method is generic and can be used in the production of high-performance organic–inorganic functional nanocomposites.
Resumo:
Diverse morphologies of multidimensional hierarchical single-crystalline ZnO nanoarchitectures including nanoflowers, nanobelts, and nanowires are obtained by use of a simple thermal evaporation and vapour-phase transport deposition technique by placing Au-coated silicon substrates in different positions inside a furnace at process temperatures as low as 550 °C. The nucleation and growth of ZnO nanostructures are governed by the vapour–solid mechanism, as opposed to the commonly reported vapour–liquid–solid mechanism, when gold is used in the process. The morphological, structural, compositional and optical properties of the synthesized ZnO nanostructures can be effectively tailored by means of the experimental parameters, and these properties are closely related to the local growth temperature and gas-phase supersaturation at the sample position. In particular, room-temperature photoluminescence measurements reveal an intense near-band-edge ultraviolet emission at about 386 nm for nanobelts and nanoflowers, which suggests that these nanostructures are of sufficient quality for applications in, for example, optoelectronic devices.
Resumo:
Composite polymer insulators provide many advantages over the traditional porcelain insulators and they are increasingly being used at both transmission and distribution levels. In the present paper, an epoxy resin/silica nanocomposite dielectric material (NDM) structure is proposed and fabricated. Hydrophobic fumed silica is incorporated in epoxy resin matrix and acetone is adopted as media agent to effectively achieve homogenous dispersion of the nano-scale silica filler. The acetone also acts as diluents to reduce viscosity before the curing phase of epoxy resin and enables bubbles to escape from being trapped. Through partial discharge (PD) and surface aging tests, it is illustrated that the inception of surface discharge of the proposed NDM is relatively higher than that of the non-filled counterpart, and a better PD resistivity was observed in the negative half cycle regarding to applied AC voltage. Results of surface aging test indicate that surface discharge activity is retarded over the test conducting time. By contrast, surface discharge developed to the opposite way on the non-filled sample. Therefore, the proposed NDM could provide better safety reliability and lower maintenance cost to industrial application compared with nonfilled conventional epoxy resin.
Resumo:
In this study, an LPG fumigation system was fitted to a Euro III compression ignition (CI) engine to explore its impact on performance, and gaseous and particulate emissions. LPG was introduced to the intake air stream (as a secondary fuel) by using a low pressure fuel injector situated upstream of the turbocharger. LPG substitutions were test mode dependent, but varied in the range of 14-29% by energy. The engine was tested over a 5 point test cycle using ultra low sulphur diesel (ULSD), and a low and high LPG substitution at each test mode. The results show that LPG fumigation coerces the combustion into pre-mixed mode, as increases in the peak combustion pressure (and the rate of pressure rise) were observed in most tests. The emissions results show decreases in nitric oxide (NO) and particulate matter (PM2.5) emissions; however, very significant increases in carbon monoxide (CO) and hydrocarbon (HC) emissions were observed. A more detailed investigation of the particulate emissions showed that the number of particles emitted was reduced with LPG fumigation at all test settings – apart from mode 6 of the ECE R49 test cycle. Furthermore, the particles emitted generally had a slightly larger median diameter with LPG fumigation, and had a smaller semi-volatile fraction relative to ULSD. Overall, the results show that with some modifications, LPG fumigation systems could be used to extend ULSD supplies without adversely impacting on engine performance and emissions.
Resumo:
This paper presents the fire performance results of light gauge steel frame (LSF) walls lined with single and double plasterboards, and externally insulated with rock fibre insulation as obtained using a finite element analysis based parametric study. A validated numerical model was used to study the influence of various fire curves developed for a range of compartment characteristics. Data from the parametric study was utilized to develop a simplified method to predict the fire resistance ratings of LSF walls exposed to realistic design fire curves. Further, this paper also presents the details of suitable fire design rules based on current cold-formed steel standards and the modifications proposed by previous researchers. Of these the recently developed design rules by Gunalan and Mahendran [1] were investigated to determine their applicability to predict the axial compression strengths and fire resistance ratings (FRR) of LSF walls exposed to realistic design fires. Finally, the stud failure times obtained from fire design rules and finite element studies were compared for LSF walls lined with single and double plasterboards, and externally insulated with rock fibres under realistic design fire curves.
Resumo:
This paper presents the effect of plasterboard joints on the fire performance of cold-formed steel walls. Plasterboard joints are unavoidable. However, they can be arranged in a way that they do not significantly influence the fire performance of cold-formed steel walls. Hence a research study into the effects of plasterboard joints on the fire performance of plasterboard lined cold-formed steel walls was undertaken using both full-scale fire tests and numerical studies. In this study a back-blocking technique was used to eliminate the plasterboard joints being located over the studs. Instead plasterboard joints were used between studs with 150 mm wide plasterboards as back-blocks. Both experimental and numerical results from this study show that the fire resistance rating of single plasterboard lined cold-formed steel walls can be increased by 25% through the use of a back-blocking joint arrangement in comparison to the traditional plasterboard joint arrangement over the studs.
Resumo:
How dance history should be conserved, like any other human event is problematical. This article refers to the dancer’s embodied repertoire of movement and questions how it might connect with the archive, so that the recording of dance work is not taken as fully representative of the work itself. I propose opening out the multi-dimensional configuring that is part of the creation of a dance piece in order to flesh out the bones of the archive. This could be done through engaging with the choreographer and the performers (who are often co-creators of the work) to draw a range of insights and perspectives together.
Resumo:
Neuropsychological tests requiring patients to find a path through a maze can be used to assess visuospatial memory performance in temporal lobe pathology, particularly in the hippocampus. Alternatively, they have been used as a task sensitive to executive function in patients with frontal lobe damage. We measured performance on the Austin Maze in patients with unilateral left and right temporal lobe epilepsy (TLE), with and without hippocampal sclerosis, compared to healthy controls. Performance was correlated with a number of other neuropsychological tests to identify the cognitive components that may be associated with poor Austin Maze performance. Patients with right TLE were significantly impaired on the Austin Maze task relative to patients with left TLE and controls, and error scores correlated with their performance on the Block Design task. The performance of patients with left TLE was also impaired relative to controls; however, errors correlated with performance on tests of executive function and delayed recall. The presence of hippocampal sclerosis did not have an impact on maze performance. A discriminant function analysis indicated that the Austin Maze alone correctly classified 73.5% of patients as having right TLE. In summary, impaired performance on the Austin Maze task is more suggestive of right than left TLE; however, impaired performance on this visuospatial task does not necessarily involve the hippocampus. The relationship of the Austin Maze task with other neuropsychological tests suggests that differential cognitive components may underlie performance decrements in right versus left TLE.
Resumo:
This paper presents a comprehensive numerical procedure to treat the blast response of laminated glass (LG) panels and studies the influence of important material parameters. Post-crack behaviour of the LG panel and the contribution of the interlayer towards blast resistance are treated. Modelling techniques are validated by comparing with existing experimental results. Findings indicate that the tensile strength of glass considerably influences the blast response of LG panels while the interlayer material properties have a major impact on the response under higher blast loads. Initially, glass panes absorb most of the blast energy, but after the glass breaks, interlayer deforms further and absorbs most of the blast energy. LG panels should be designed to fail by tearing of the interlayer rather than failure at the supports to achieve a desired level of protection. From this aspect, material properties of glass, interlayer and sealant joints play important roles, but unfortunately they are not accounted for in the current design standards. The new information generated in this paper will enhance the capabilities of engineers to better design LG panels under blast loads and use better materials to improve the blast response of LG panels.
Resumo:
Hydroxyapatite (HA) coatings have numerous applications in orthopedics and dentistry, owing to their excellent ability to promote stronger implant fixation and faster bone tissue ingrowth and remodeling. Thermal plasma spray and other plasma-assisted techniques have recently been used to synthesize various calcium phosphate-based bioceramics. Despite notable recent achievements in the desired stoichiometry, phase composition, mechanical, structural, and bio-compatible properties, it is rather difficult to combine all of the above features in a single coating. For example, many existing plasma-sprayed HA coatings fall short in meeting the requirements of grain size and crystallinity, and as such are subject to enhanced resorption in body fluid. On the other hand, relatively poor interfacial bonding and stability is an obstacle to the application of the HA coatings in high load bearing Ti6Al4V knee joint implants. Here, we report on an alternative: a plasma-assisted, concurrent, sputtering deposition technique for high performance biocompatible HA coatings on Ti6Al4V implant alloy. The plasma-assisted RF magnetron co-sputtering deposition method allows one to simultaneously achieve most of the desired attributes of the biomimetic material and overcome the aforementioned problems. This article details the film synthesis process specifications, extensive analytical characterization of the material's properties, mechanical testing, simulated body fluid assessments, biocompatibility and cytocompatibility of the HA-coated Ti6Al4V orthopedic alloy. The means of optimization of the plasma and deposition process parameters to achieve the desired attributes and performance of the HA coating, as well as future challenges in clinical applications are also discussed.
Resumo:
This paper evaluates and proposes various compensation methods for three-level Z-source inverters under semiconductor-failure conditions. Unlike the fault-tolerant techniques used in traditional three-level inverters, where either an extra phase-leg or collective switching states are used, the proposed methods for three-level Z-source inverters simply reconfigure their relevant gating signals so as to ride-through the failed semiconductor conditions smoothly without any significant decrease in their ac-output quality and amplitude. These features are partly attributed to the inherent boost characteristics of a Z-source inverter, in addition to its usual voltage-buck operation. By focusing on specific types of three-level Z-source inverters, it can also be shown that, for the dual Z-source inverters, a unique feature accompanying it is its extra ability to force common-mode voltage to zero even under semiconductor-failure conditions. For verifying these described performance features, PLECS simulation and experimental testing were performed with some results captured and shown in a later section for visual confirmation.
Resumo:
While most studies examine the effect of marketing, innovation, and learning capabilities (often separately) on performance, this study develops a unified model to investigate the combined effect of these capabilities on performance. This study further examines the complementary effect of these capabilities on performance. This study draws on the resource-based view theory to examine 171 manufacturing SMEs. The findings suggest that marketing, innovation, and learning capabilities are positively related to SME performance. In addition, these capabilities interact with one another to create great synergy in achieving SME performance.
Resumo:
Adopting both the resource-based view and dynamic capability theory this study advances the contention that firms must possess both resources and capabilities at a superior level to achieve superior customer and product performance. To examine this contention this study investigates the individual effect of the complementarity between marketing resources and capability and complementarity between innovation resources and capability on customer and product performance respectively. The results of a survey of 171 B2B manufacturing firms show a significant main effect for complementarity between marketing resources–capability and complementarity between innovation resources–capability on customer and product performance. The findings also show that complementarity marketing resources–capability has a stronger positive relationship with customer performance than with product performance, while complementarity between innovation resources–capability has a stronger positive relationship with product performance than with customer performance.
Resumo:
Firms are increasingly identifying new avenues to enhance their market position. One such effort involves the firms' ability to continuously learn. Learning has the capacity to enable firms to develop and implement more efficient and effective innovation-focused strategies, resulting in the ability to develop and deliver more products in a timelier manner. This study tests the relationship between innovation resource–capability complementarity and innovation-based performance. This study further elaborates that while innovation resource–capability complementarity drives innovation-based performance; their relationship will be enhanced via the firms' possession of superior learning capability. The findings show a significant effect of innovation resource–capability complementarity on innovation-based performance. The results also show that firms that possess superior learning capability are willing to question their operational processes and routines and make adjustments following the feedback obtained from customers and channels; thereby enhancing their abilities to develop more new products and increase their speed in delivering products to the customers.
Resumo:
Aim Performance measures for Australian laboratories reporting cervical cytology are a set of quantifiable measures relating to the profile and accuracy of reporting. This study reviews aggregate data collected over the ten years in which participation in the performance measures has been mandatory. Methods Laboratories submit annual data on performance measures relating to the profile of reporting, including reporting rates for technically unsatisfactory specimens, high grade or possible high grade abnormalities and abnormal reports. Cytology-histology correlation data and review findings of negative smears reported from women with histological high grade disease are also collected. Suggested acceptable standards are set for each measure. This study reviews the aggregate data submitted by all laboratories for the years 1998-2008 and examines trends in reporting and the performance of laboratories against the suggested standards. Results The performance of Australian laboratories has shown continued improvement over the study period. There has been a fall in the proportion of laboratories with data outside the acceptable standard range in all performance measures. Laboratories are reporting a greater proportion of specimens as definite or possible high grade abnormality. This is partly attributable to an increase in the proportion of abnormal results classified as high grade or possible high grade abnormality. Despite this, the positive predictive value for high grade and possible high grade abnormalities has continued to rise. Conclusion Performance measures for cervical cytology have provided a valuable addition to external quality assurance procedures in Australia. They have documented continued improvements in the aggregate performance, as well as providing benchmarking data and goals for acceptable performance for individual laboratories.