947 resultados para linear programming applications
Resumo:
The applications of the Finite Element Method (FEM) for three-dimensional domains are already well documented in the framework of Computational Electromagnetics. However, despite the power and reliability of this technique for solving partial differential equations, there are only a few examples of open source codes available and dedicated to the solid modeling and automatic constrained tetrahedralization, which are the most time consuming steps in a typical three-dimensional FEM simulation. Besides, these open source codes are usually developed separately by distinct software teams, and even under conflicting specifications. In this paper, we describe an experiment of open source code integration for solid modeling and automatic mesh generation. The integration strategy and techniques are discussed, and examples and performance results are given, specially for complicated and irregular volumes which are not simply connected. © 2011 IEEE.
Resumo:
This paper deals with exponential stability of discrete-time singular systems with Markov jump parameters. We propose a set of coupled generalized Lyapunov equations (CGLE) that provides sufficient conditions to check this property for this class of systems. A method for solving the obtained CGLE is also presented, based on iterations of standard singular Lyapunov equations. We present also a numerical example to illustrate the effectiveness of the approach we are proposing.
Resumo:
This paper deals with the problem of establishing a state estimator for switched affine systems. For that matter, a modification on the Luenberger observer is proposed, the switched Luenberger observer, whose idea is to design one output gain matrix for each mode of the original system. The efficiency of the proposed method relies on a simplification on estimation error which is proved always valid, guaranteeing the estimation error to asymptotically converge to zero, for any initial state and switching law. Next, a dynamic output-dependent switching law is formulated. Then, design methodologies using linear matrix inequalities are proposed, which, to the authors's knowledge, have not yet been applied to this problem. Finally, observers for DC-DC converters are designed and simulated as application examples. © 2013 Brazilian Society for Automatics - SBA.
Resumo:
The vortex matter in a superconducting disk with a linear configuration of metallic and superconducting defects is studied. Effects associated to the pinning (anti-pinning) force of the metallic (superconducting) defect on the vortex configuration and on the thermodynamic critical fields are analyzed in the framework of the Ginzburg Landau theory. We calculate the loop of the magnetization, vorticity and free energy curves as a function of the magnetic field for a thin disk. Due to vortex-defect attraction for a metallic defect (repulsion for a superconducting defect), the vortices always (never) are found to be sitting on the defect position. © 2013.
Resumo:
We report on the fabrication of novel lead-germanate glasses and fibers. We have characterized these glasses in terms of their thermal properties, Raman spectra and refractive indices (both linear and nonlinear) and present them as viable alternatives to tellurite glasses for applications requiring highly nonlinear optical fibers. © 2013 Optical Society of America.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The present work describes an alternative methodology for identification of aeroelastic stability in a range of varying parameters. Analysis is performed in time domain based on Lyapunov stability and solved by convex optimization algorithms. The theory is outlined and simulations are carried out on a benchmark system to illustrate the method. The classical methodology with the analysis of the system's eigenvalues is presented for comparing the results and validating the approach. The aeroelastic model is represented in state space format and the unsteady aerodynamic forces are written in time domain using rational function approximation. The problem is formulated as a polytopic differential inclusion system and the conceptual idea can be used in two different applications. In the first application the method verifies the aeroelastic stability in a range of air density (or its equivalent altitude range). In the second one, the stability is verified for a rage of velocities. These analyses are in contrast to the classical discrete analysis performed at fixed air density/velocity values. It is shown that this method is efficient to identify stability regions in the flight envelope and it offers promise for robust flutter identification.
Resumo:
Agricultural use of tannery sludge (TS) may increase risks to soils. Thus, composting is recognized as one of the most suitable alternatives for TS recycling. Field experiments were carried out to evaluate the effects of composted tannery sludge (CTS) on chromium (Cr), cadmium (Cd), nickel (Ni), and lead (Pb) accumulation in soil after 3 years. Soil samples were collected 60 days after CTS application. After 3 years, The CTS increased Cr and Ni content, while Cd and Pb contents decreased. The third year, Cr contents showed linear increases as CTS rates were applied. The application of CTS, after 3 years, in the 2.5, 5, and 10 Mg ha(-1) increased Cr significantly (140.7%, 159.7%, and 19%, respectively) and Ni (32%, 53%, and 43.8%, respectively) contents in the soil surface layer. This means that consecutive amendments of CTS increase Cr contents in the soil and plants.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The physics of plasmas encompasses basic problems from the universe and has assured us of promises in diverse applications to be implemented in a wider range of scientific and engineering domains, linked to most of the evolved and evolving fundamental problems. Substantial part of this domain could be described by R–D mechanisms involving two or more species (reaction–diffusion mechanisms). These could further account for the simultaneous non-linear effects of heating, diffusion and other related losses. We mention here that in laboratory scale experiments, a suitable combination of these processes is of vital importance and very much decisive to investigate and compute the net behaviour of plasmas under consideration. Plasmas are being used in the revolution of information processing, so we considered in this technical note a simple framework to discuss and pave the way for better formalisms and Informatics, dealing with diverse domains of science and technologies. The challenging and fascinating aspects of plasma physics is that it requires a great deal of insight in formulating the relevant design problems, which in turn require ingenuity and flexibility in choosing a particular set of mathematical (and/or experimental) tools to implement them.