980 resultados para lime-phosphorus feeds
Resumo:
Concentrations of dissolved and particulate organic carbon (DOC and POC, respectively), phosphorus (DP and PP, respectively) and particulate organic nitrogen (PON) were determined at Station VITYAZ6656 in the Sea of Japan in 12 sea water samples collected in June 1972 with a 200-liter sampling bottle. Mean weighted concentrations from the surface to 2000 m were: DOC - 1.58 mg/l, POC - 17.9 µg/l, DP - 13.9 µg/l, PP - 0.185 µg/l, PON - 2.7 µg/l, the ratios were DOC:DP=100:9 and POC:PON:PP=100:14:1. Relation between POC (µg/l)and the light attenuation index "e" (1/m) for the visible part of the spectrum is described by the equation POC = ca. 170e. The maximum of POC in the upper layer correlated with the maxima of phyto- and bacterioplankton and protozoa.
Resumo:
Dynamics of growth of natural phytoplankton and bacterioplankton in deep seawater upwelled to the upper sea layer were studied. Seawater from the lower part of the aerobic zone of the Black Sea was shown to have high bio-productive potential and can be used as an environment for algae and bacteria cultivation.
Resumo:
Study of phosphorus distribution in grain size fractions of eupelagic clays showed high (up to 3%) content of P in Fe-Mn micronodules that can contain up to 20-30% of total P. Mineral P associated with Fe in ocean sediments is an analog of manganese in ocean sedimentogenesis. Sharp decrease of P contents in ocean Fe-Mn nodules compared to ones from seas results from decrease of Fe contents and partial neutralization of Fe activity by Mn.
Resumo:
Forms of phosphorus were determined for the first time in the area under study. Based on the ratio between organic and inorganic forms of phosphorus, it is concluded that sorption processes in the thin surface layer and photosynthetic processes in surface water are of the same intensity. Extremely high values of total phosphorus in the thin layer may be indicators of water pollution.
Resumo:
Despite intensive research on the different domains of the marine phosphorus (P) cycle during the last decades, frequently discussed open questions still exist especially on controlling factors for the benthic behaviour of P and its general distribution in sediment-pore water systems. Steady state or the internal balance of all relevant physical and (bio)geochemical processes are amongst the key issues. In this study we present and discuss an extended data set from surface sediments recovered from three locations on the NW African continental slope. Pore water data and results from sequential sediment extractions give clear evidence to the well-known close relationship between the benthic cycles of P and iron. Accordingly, most of the dissolved phosphate must have been released by microbially catalyzed reductive dissolution of iron (oxhydr)oxides. However, rates of release and association of P and iron, respectively, are not directly represented in profiles of element specific sediment compositions. Results from steady-state based transport-reaction modelling suggest that particle mixing due to active bioturbation, or rather a physical net downward transport of P associated to iron (oxyhydr)oxides, is an essential process for the balance of the inspected benthic cycles. This study emphasizes the importance of balancing analytical data for a comprehensive understanding of all processes involved in biogeochemical cycles.