865 resultados para layered hydroxide salt
Resumo:
GSK3/shaggy-like genes encode kinases that are involved in a variety of biological processes. By functional complementation of the yeast calcineurin mutant strain DHT22-1a with a NaCl stress-sensitive phenotype, we isolated the Arabidopsis cDNA AtGSK1, which encodes a GSK3/shaggy-like protein kinase. AtGSK1 rescued the yeast calcineurin mutant cells from the effects of high NaCl. Also, the AtGSK1 gene turned on the transcription of the NaCl stress-inducible PMR2A gene in the calcineurin mutant cells under NaCl stress. To further define the role of AtGSK1 in the yeast cells we introduced a deletion mutation at the MCK1 gene, a yeast homolog of GSK3, and examined the phenotype of the mutant. The mck1 mutant exhibited a NaCl stress-sensitive phenotype that was rescued by AtGSK1. Also, constitutive expression of MCK1 complemented the NaCl-sensitive phenotype of the calcineurin mutants. Therefore, these results suggest that Mck1p is involved in the NaCl stress signaling in yeast and that AtGSK1 may functionally replace Mck1p in the NaCl stress response in the calcineurin mutant. To investigate the biological function of AtGSK1 in Arabidopsis we examined the expression of AtGSK1. Northern-blot analysis revealed that the expression is differentially regulated in various tissues with a high level expression in flower tissues. In addition, the AtGSK1 expression was induced by NaCl and exogenously applied ABA but not by KCl. Taken together, these results suggest that AtGSK1 is involved in the osmotic stress response in Arabidopsis.
Resumo:
Salt accumulation in spinach (Spinacia oleracea L.) leaves first inhibits photosynthesis by decreasing stomatal and mesophyll conductances to CO2 diffusion and then impairs ribulose-1,5-bisphosphate carboxylase/oxygenase (S. Delfine, A. Alvino, M. Zacchini, F. Loreto [1998] Aust J Plant Physiol 25: 395–402). We measured gas exchange and fluorescence in spinach recovering from salt accumulation. When a 21-d salt accumulation was reversed by 2 weeks of salt-free irrigation (rewatering), stomatal and mesophyll conductances and photosynthesis partially recovered. For the first time, to our knowledge, it is shown that a reduction of mesophyll conductance can be reversed and that this may influence photosynthesis. Photosynthesis and conductances did not recover when salt drainage was restricted and Na content in the leaves was greater than 3% of the dry matter. Incomplete recovery of photosynthesis in rewatered and control leaves may be attributed to an age-related reduction of conductances. Biochemical properties were not affected by the 21-d salt accumulation. However, ribulose-1,5-bisphosphate carboxylase/oxygenase activity and content were reduced by a 36- to 50-d salt accumulation. Photochemical efficiency was reduced only in 50-d salt-stressed leaves because of a decrease in the fraction of open photosystem II centers. A reduction in chlorophyll content and an increase in the chlorophyll a/b ratio were observed in 43- and 50-d salt-stressed leaves. Low chlorophyll affects light absorptance but is unlikely to change light partitioning between photosystems.
Resumo:
In normal rats and mice, immunostaining with specific antibodies revealed that nuclei of most prostatic epithelial cells harbor estrogen receptor β (ERβ). In rat ventral prostate, 530- and 549-aa isoforms of the receptor were identified. These sediment in the 4S region of low-salt sucrose gradients, indicating that prostatic ERβ does not contain the same protein chaperones that are associated with ERα. Estradiol (E2) binding and ERβ immunoreactivity coincide on the gradient, with no indication of ERα. In prostates from mice in which the ERβ gene has been inactivated (BERKO), androgen receptor (AR) levels are elevated, and the tissue contains multiple hyperplastic foci. Most epithelial cells express the proliferation antigen Ki-67. In contrast, prostatic epithelium from wild-type littermates is single layered with no hyperplasia, and very few cells express Ki-67. Rat ventral prostate contains an estrogenic component, which comigrates on HPLC with the testosterone metabolite 5α-androstane-3β,17β-diol (3βAdiol). This compound, which competes with E2 for binding to ERβ and elicits an estrogenic response in the aorta but not in the pituitary, decreases the AR content in prostates of wild-type mice but does not affect the elevated levels seen in ERβ knockout (BERKO) mice. Thus ERβ, probably as a complex with 3βAdiol, is involved in regulating the AR content of the rodent prostate and in restraining epithelial growth. These findings suggest that ligands specific for ERβ may be useful in the prevention and/or clinical management of prostatic hyperplasia and neoplasia.
Resumo:
To evaluate the relative importance of ornithine (Orn) as a precursor in proline (Pro) synthesis, we isolated and sequenced a cDNA encoding the Orn-δ-aminotransferase (δ-OAT) from Arabidopsis thaliana. The deduced amino acid sequence showed high homology with bacterial, yeast, mammalian, and plant sequences, and the N-terminal residues exhibited several common features with a mitochondrial transit peptide. Our results show that under both salt stress and normal conditions, δ-OAT activity and mRNA in young plantlets are slightly higher than in older plants. This appears to be related to the necessity to dispose of an easy recycling product, glutamate. Analysis of the expression of the gene revealed a close association with salt stress and Pro production. In young plantlets, free Pro content, Δ1-pyrroline-5-carboxylate synthase mRNA, δ-OAT activity, and δ-OAT mRNA were all increased by salt-stress treatment. These results suggest that for A. thaliana, the Orn pathway, together with the glutamate pathway, plays an important role in Pro accumulation during osmotic stress. Conversely, in 4-week-old A. thaliana plants, although free Pro level also increased under salt-stress conditions, the δ-OAT activity appeared to be unchanged and δ-OAT mRNA was not detectable. Δ1-pyrroline-5-carboxylate synthase mRNA was still induced at a similar level. Therefore, for the adult plants the free Pro increase seemed to be due to the activity of the enzymes of the glutamate pathway.
Resumo:
The solvation energies of salt bridges formed between the terminal carboxyl of the host pentapeptide AcWL- X-LL and the side chains of Arg or Lys in the guest (X) position have been measured. The energies were derived from octanol-to-buffer transfer free energies determined between pH 1 and pH 9. 13C NMR measurements show that the salt bridges form in the octanol phase, but not in the buffer phase, when the side chains and the terminal carboxyl group are charged. The free energy of salt-bridge formation in octanol is approximately -4 kcal/mol (1 cal = 4.184 J), which is equal to or slightly larger than the sum of the solvation energies of noninteracting pairs of charged side chains. This is about one-half the free energy that would result from replacing a charge pair in octanol with a pair of hydrophobic residues of moderate size. Therefore, salt bridging in octanol can change the favorable aqueous solvation energy of a pair of oppositely charged residues to neutral or slightly unfavorable but cannot provide the same free energy decrease as hydrophobic residues. This is consistent with recent computational and experimental studies of protein stability.
Resumo:
A cDNA corresponding to a putative phosphatidylinositol-specific phospholipase C (PI-PLC) in the higher plant Arabidopsis thaliana was cloned by use of the polymerase chain reaction. The cDNA, designated cAtPLC1, encodes a putative polypeptide of 561 aa with a calculated molecular mass of 64 kDa. The putative product includes so-called X and Y domains found in all PI-PLCs identified to date. In mammalian cells, there are three types of PI-PLC, PLC-beta, -gamma, and -delta. The overall structure of the putative AtPLC1 protein is most similar to that of PLC-delta, although the AtPLC1 protein is much smaller than PLCs from other organisms. The recombinant AtPLC1 protein synthesized in Escherichia coli was able to hydrolyze phosphatidylinositol 4,5-bisphosphate and this activity was completely dependent on Ca2+, as observed also for mammalian PI-PLCs. These results suggest that the AtPLC1 gene encodes a genuine PI-PLC of a higher plant. Northern blot analysis showed that the AtPLC1 gene is expressed at very low levels in the plant under normal conditions but is induced to a significant extent under various environmental stresses, such as dehydration, salinity, and low temperature. These observations suggest that AtPLC1 might be involved in the signal-transduction pathways of environmental stresses and that an increase in the level of AtPLC1 might amplify the signal, in a manner that contributes to the adaptation of the plant to these stresses.
Resumo:
This work reports on the synthesis of nanosheets of layered titanosilicate JDF-L1 supported on commercial E-type glass fibers with the aim of developing novel nanoarchitectures useful as robust and easy to handle hydrogen adsorbents. The preparation of those materials is carried out by hydrothermal reaction from the corresponding gel precursor in the presence of the glass support. Because of the basic character of the synthesis media, silica from the silicate-based glass fibers can be involved in the reaction, cementing its associated titanosilicate and giving rise to strong linkages on the support with the result of very stable heterostructures. The nanoarchitectures built up by this approach promote the growth and disposition of the titanosilicate nanosheets as a house-of-cards radially distributed around the fiber axis. Such an open arrangement represents suitable geometry for potential uses in adsorption and catalytic applications where the active surface has to be available. The content of the titanosilicate crystalline phase in the system represents about 12 wt %, and this percentage of the adsorbent fraction can achieve, at 298 K and 20 MPa, 0.14 wt % hydrogen adsorption with respect to the total mass of the system. Following postsynthesis treatments, small amounts of Pd (<0.1 wt %) have been incorporated into the resulting nanoarchitectures in order to improve their hydrogen adsorption capacity. In this way, Pd-layered titanosilicate supported on glass fibers has been tested as a hydrogen adsorbent at diverse pressures and temperatures, giving rise to values around 0.46 wt % at 298 K and 20 MPa. A mechanism of hydrogen spillover involving the titanosilicate framework and the Pd nanoparticules has been proposed to explain the high increase in the hydrogen uptake capacity after the incorporation of Pd into the nanoarchitecture.
Resumo:
The development of new nano-biocomposites has been one of the main research areas of interest in polymer science in recent years, since they can combine the intrinsic biodegradable nature of matrices with the ability to modify their properties by the addition of selected nano-reinforcements. In this work, the addition of mineral nanoclays (montmorillonites and sepiolites) to a commercial starch-based matrix is proposed. A complete study on their processing by melt-intercalation techniques and further evaluation of the main properties of nano-biocomposites has been carried out. The results reported show an important influence of the nano-biocomposites morphology on their final properties. In particular, the rheological and viscoelastic characteristics of these systems are very sensitive to the dispersion level of the nanofiller, but it is possible to assess that the material processing behaviour is not compromised by the presence of these nano-reinforcements. In general, both nanofillers had a positive influence in the materials final properties. Mechanical performance shows improvements in terms of elastic modulus, without important limitations in terms of ductility. Thermal properties are improved in terms of residual mass after degradation and low improvements are also observed in terms of oxygen barrier properties.
Resumo:
To obtain insights into archaeal nitrogen signaling and haloadaptation of the nitrogen/carbon/energy-signaling protein PII, we determined crystal structures of recombinantly produced GlnK2 from the extreme halophilic archaeon Haloferax mediterranei, complexed with AMP or with the PII effectors ADP or ATP, at respective resolutions of 1.49 Å, 1.45 Å, and 2.60 Å. A unique trait of these structures was a three-tongued crown protruding from the trimer body convex side, formed by an 11-residue, N-terminal, highly acidic extension that is absent from structurally studied PII proteins. This extension substantially contributed to the very low pI value, which is a haloadaptive trait of H. mediterranei GlnK2, and participated in hexamer-forming contacts in one crystal. Similar acidic N-extensions are shown here to be common among PII proteins from halophilic organisms. Additional haloadaptive traits prominently represented in H. mediterranei GlnK2 are a very high ratio of small residues to large hydrophobic aliphatic residues, and the highest ratio of polar to nonpolar exposed surface for any structurally characterized PII protein. The presence of a dense hydration layer in the region between the three T-loops might also be a haloadaptation. Other unique findings revealed by the GlnK2 structure that might have functional relevance are: the adoption by its T-loop of a three-turn α-helical conformation, perhaps related to the ability of GlnK2 to directly interact with glutamine synthetase; and the firm binding of AMP, confirmed by biochemical binding studies with ATP, ADP, and AMP, raising the possibility that AMP could be an important PII effector, at least in archaea.
Resumo:
The use of hydrogen as an energy vector leads to the development of materials with high hydrogen adsorption capacity. In this work, a new layered stannosilicate, UZAR-S3, is synthesized and delaminated, producing UZAR-S4. UZAR-S3, with the empirical formula Na4SnSi5O14·3.5H2O and lamellar morphology, is a layered stannosilicate built from SnO6 and SiO4 polyhedra. The delamination process used here comprises three stages: protonation with acetic acid, swelling with nonylamine and the delamination itself with an HCl/H2O/ethanol solution. UZAR-S4 is composed of sheets a few nanometers thick with a high aspect ratio and a surface area of 236 m2/g, twenty times higher than that of UZAR-S3. At −196 °C for UZAR-S4, H2 adsorption reached remarkable values of 3.7 and 4.2 wt% for 10 and 40 bar, respectively, the latter value giving a high volumetric H2 storage capacity of 26.2 g of H2/L.
Resumo:
In this work, a sodium montmorillonite (Na+-Mt) was modified with two molecules simultaneously, an organic dye, methylene blue (MB), and ethyl hexadecyl dimethyl ammonium (EHDDMA). The synthesised organo-montmorillonites (OMt) combining different proportions of the two molecules were thoroughly characterised and mixed with ethylene vinyl acetate copolymer (EVA) in order to check the ability of these OMt as pigments and reinforcing additives. The synthesised OMt combining both surfactants, MB and EHDDMA, present higher interlayer distances than those with only MB, which were employed in previous works as nanopigments. When these OMt were incorporated in the EVA matrix, the obtained clay polymer nanocomposites (CPN) showed a high exfoliation degree of the OMt in the polymer, in such a way that at 80% of the cationic exchange capacity (CEC) of the Mt exchanged with EHDDMA, most of the OMt was exfoliated. Moreover, all the obtained CPN showed an increase in the Young's Moduli compared to the EVA reference, and especially those containing higher amounts of MB. The thermal stability of the CPN also increases with the MB content, compared to other CPN including conventional surfactants. The hiding power and colouring power achieved in the CPN are higher even with a much lower load of MB when EHDDMA is exchanged in the Mt.
Resumo:
The present understanding of the initiation of boudinage and folding structures is based on viscosity contrasts and stress exponents, considering an intrinsically unstable state of the layer. The criterion of localization is believed to be prescribed by geometry-material interactions, which are often encountered in natural structures. An alternative localization phenomenon has been established for ductile materials, in which instability emerges for critical material parameters and loading rates from homogeneous conditions. In this thesis, conditions are sought under which this type of instability prevails and whether localization in geological materials necessarily requires a trigger by geometric imperfections. The relevance of critical deformation conditions, material parameters and the spatial configuration of instabilities are discussed in a geological context. In order to analyze boudinage geometries, a numerical eigenmode analysis is introduced. This method allows determining natural frequencies and wavelengths of a structure and inducing perturbations on these frequencies. In the subsequent coupled thermo-mechanical simulations, using a grain size evolution and end-member flow laws, localization emerges when material softening through grain size sensitive viscous creep sets in. Pinch-and-swell structures evolve along slip lines through a positive feedback between the matrix response and material bifurcations inside the layer, independent from the mesh-discretization length scale. Since boudinage and folding are considered to express the same general instability, both structures should arise independently of the sign of the loading conditions and for identical material parameters. To this end, the link between material to energy instabilities is approached by means of bifurcation analyses of the field equations and finite element simulations of the coupled system of equations. Boudinage and folding structures develop at the same critical energy threshold, where dissipative work by temperature-sensitive creep overcomes the diffusive capacity of the layer. This finding provides basis for a unified theory for strain localization in layered ductile materials. The numerical simulations are compared to natural pinch-and-swell microstructures, tracing the adaption of grain sizes, textures and creep mechanisms in calcite veins. The switch from dislocation to diffusion creep relates to strain-rate weakening, which is induced by dissipated heat from grain size reduction, and marks the onset of continuous necking. The time-dependent sequence uncovers multiple steady states at different time intervals. Microstructurally and mechanically stable conditions are finally expressed in the pinch-and-swell end members. The major outcome of this study is that boudinage and folding can be described as the same coupled energy-mechanical bifurcation, or as one critical energy attractor. This finding allows the derivation of critical deformation conditions and fundamental material parameters directly from localized structures in the field.