962 resultados para isoenzyme polymorphism
Resumo:
Kidney transplantation has been recognised as the optimal treatment choice for most end stage renal disease patients and the increase of allograft survival rates is achieved through the refinement of novel immunosuppressive agents. Chronic Graft Disease (CGD) is a multifactorial process that likely includes a combination of immunological, apoptotic and inflammatory factors. The application of individualised immunosuppressive therapies will also depend on the identification of risk factors that can influence chronic disease. Despite being the subject of several independent studies, investigations of the relationship between transforming growth factor-b1 (TGF-b1) polymorphisms and kidney graft outcome continue to be plagued by contradictory conclusions.
Resumo:
Rotavirus double-stranded RNA was detected directly in sewage treatment plant samples over a 1-year period by reverse transcription followed by PCR amplification of the VP7 gene and Southern blot hybridization. The presence of naturally occurring rotaviruses was demonstrated in 42% of raw sewage samples and in 67% of treated effluent samples, Amplified viral sequences were analyzed bg restriction enzymes. Ten different restriction profiles were characterized, most of which were found in treated effluent samples. A mixture of restriction profiles was observed in 75% of contaminated effluent samples, The profiles were compared with those obtained from human rotavirus isolates involved in infections in children from the same area (six different profiles were detected), Five identical viral sequences were detected in both environmental and clinical samples, Restriction profiles sere also compared io profiles from known genomic sequences of human and animal viruses. Both human and animal origins of rotavirus contamination of water seemed likely.
Resumo:
Background: The -819C/T polymorphism in interleukin 10 (IL-10) gene has been reported to be associated with inflammatory bowel disease (IBD) ,but the previous results are conflicting. Materials and Methods: The present study aimed at investigating the association between this polymorphism and risk of IBD using a meta-analysis.PubMed,Web of Science,EMBASE,google scholar and China National Knowledge Infrastructure (CNKI) databases were systematically searched to identify relevant publications from their inception to April 2016.Pooled odds ratio (OR) with 95% confidence interval (CI) was calculated using fixed- or random-effects models. Results: A total of 7 case-control studies containing 1890 patients and 2929 controls were enrolled into this meta-analysis, and our results showed no association between IL-10 gene -819C/T polymorphism and IBD risk(TT vs. CC:OR=0.81,95%CI 0.64- 1.04;CT vs. CC:OR=0.92,95%CI 0.81-1.05; Dominant model: OR=0.90,95%CI 0.80-1.02; Recessive model: OR=0.84,95%CI 0.66-1.06). In a subgroup analysis by nationality, the -819C/T polymorphism was not associated with IBD in both Asians and Caucasians. In the subgroup analysis stratified by IBD type, significant association was found in Crohn’s disease(CD)(CT vs. CC:OR=0.68,95%CI 0.48-0.97). Conclusion: In summary, the present meta-analysis suggests that the IL-10 gene -819C/T polymorphism may be associated with CD risk.
Resumo:
Developing a fast, inexpensive, and specific test that reflects the mutations present in Mycobacterium tuberculosis isolates according to geographic region is the main challenge for drug-resistant tuberculosis (TB) control. The objective of this study was to develop a molecular platform to make a rapid diagnosis of multidrug-resistant (MDR) and extensively drug-resistant TB based on single nucleotide polymorphism (SNP) mutations present in the rpoB, katG, inhA, ahpC, and gyrA genes from Colombian M. tuberculosis isolates. The amplification and sequencing of each target gene was performed. Capture oligonucleotides, which were tested before being used with isolates to assess the performance, were designed for wild type and mutated codons, and the platform was standardised based on the reverse hybridisation principle. This method was tested on DNA samples extracted from clinical isolates from 160 Colombian patients who were previously phenotypically and genotypically characterised as having susceptible or MDR M. tuberculosis. For our method, the kappa index of the sequencing results was 0,966, 0,825, 0,766, 0,740, and 0,625 for rpoB, katG, inhA, ahpC, and gyrA, respectively. Sensitivity and specificity were ranked between 90-100% compared with those of phenotypic drug susceptibility testing. Our assay helps to pave the way for implementation locally and for specifically adapted methods that can simultaneously detect drug resistance mutations to first and second-line drugs within a few hours.
Resumo:
Currently, it is accepted that there are three species that were formerly grouped under Candida parapsilosis : C. parapsilosis sensu stricto, Candida orthopsilosis , and Candida metapsilosis . In fact, the antifungal susceptibility profiles and distinct virulence attributes demonstrate the differences in these nosocomial pathogens. An accurate, fast, and economical identification of fungal species has been the main goal in mycology. In the present study, we searched sequences that were available in the GenBank database in order to identify the complete sequence for the internal transcribed spacer (ITS)1-5.8S-ITS2 region, which is comprised of the forward and reverse primers ITS1 and ITS4. Subsequently, an in silico polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) was performed to differentiate the C. parapsilosis complex species. Ninety-eight clinical isolates from patients with fungaemia were submitted for analysis, where 59 isolates were identified as C. parapsilosis sensu stricto, 37 were identified as C. orthopsilosis, and two were identified as C. metapsilosis. PCR-RFLP quickly and accurately identified C. parapsilosis complex species, making this method an alternative and routine identification system for use in clinical mycology laboratories.
Resumo:
Poster presented at the From Basic Sciences to Clinical Research - First International Congress of CiiEM. Egas Moniz, Caparica, Portugal, 27-28 November 2015
Resumo:
Poster presented at the From Basic Sciences to Clinical Research - First International Congress of CiiEM. Egas Moniz, Caparica, Portugal, 27-28 November 2015
Resumo:
Background: H19 is a strong candidate gene for influencing birth weight variation and is exclusively imprinted maternally. In an attempt to understand the relationship of this gene polymorphism with low birth weight children, we investigated association of H19/RsaI polymorphism with low birth weight and normal birth weight in children and their mothers. Objectives: The aim of our study was to establish the association between H19 gene polymorphism and LW in children born in Pernambuco, state of Brazil. Patients and Methods: It were selected 89 children, 40 low birth weight (LW) and 49 normal birth weight (NW) and 71 mothers (40 mothers of newborns NW and 31 mothers of newborns LW) attended at Dom Malan Hospital, Petrolina, Pernambuco - Brazil. Peripheral blood samples were collected from patients and genomic DNA was extracted and detected by electrophoresis agarose gel, stained by Blue Green Loading Dye. DNA PCR amplification was done using the primers H1 (sense) and H3 (antisense). PCR products were digested with RsaI and electrophoresed on agarose gel stained by ethidium bromide. Statistical analyses were performed using the program BioEstat version 5.0. Results: The RsaI polymorphism in the H19 gene showed that genotype frequencies did not differ statistically between low birth weight (AA = 12.5%, AB = 45%, BB = 42.5%) and control (AA = 8.6% AB = 36.73%, BB= 55.10% groups) and the allele frequencies were not significantly different (P = 0.2897). We also did not observe any association between maternal H19 allele polymorphism and low birth weight newborns (P =0.7799) or normal birth weight children (P = 0.8976). Conclusions: The small size of sample may be the explanation for these results; future studies with more patients are needed to confirm the effect of H19/RsaI polymorphism on birth weight of LW newborns.
Resumo:
Background: Recurrent spontaneous abortion is one of the diseases that can lead to physical, psychological, and, economical problems for both individuals and society. Recently a few numbers of genetic polymorphisms in kinase insert domain-containing receptor (KDR) gene are examined that can endanger the life of the fetus in pregnant women. Objective: The risk of KDR gene polymorphisms was investigated in Iranian women with idiopathic recurrent spontaneous abortion (RSA). Materials and Methods: A case controlled study was performed. One hundred idiopathic recurrent spontaneous abortion patients with at least two consecutive pregnancy losses before 20 weeks of gestational age with normal karyotypes were included in the study. Also, 100 healthy women with at least one natural pregnancy were studied as control group. Two functional SNPs located in KDR gene; rs1870377 (Q472H), and rs2305948 (V297I) as well as one tag SNP in the intron region (rs6838752) were genotyped by using PCR based restriction fragment length polymorphism (PCR-RFLP) technique. Haplotype frequency was determined for these three SNPs’ genotypes. Analysis of genetic STRUCTURE and K means clustering were performed to study genetic variation. Results: Functional SNP (rs1870377) was highly linked to tag SNP (rs6838752) (D´ value=0. 214; χ2 = 16.44, p<0. 001). K means clustering showed that k = 8 as the best fit for the optimal number of genetic subgroups in our studied materials. This result was in agreement with Neighbor Joining cluster analysis. Conclusion: In our study, the allele and genotype frequencies were not associated with RSA between patient and control individuals. Inconsistent results in different populations with different allele frequencies among RSA patients and controls may be due to ethnic variation and used sample size.
Resumo:
Mycobacterium bovis is the etiological agent of tuberculosis in domestic and wild animals. Its involvement as a human pathogen has been highlighted again with the recent descriptions of transmission through dairy products (18), reactivation or primary infection in human immunodeficiency virus-infected patients (5), and association with meat industry workers, animal keepers, or hunters (3). Strains resistant to antituberculous drugs (M. bovis is naturally resistant to pyrazinamide) pose an additional risk (2). Several studies have demonstrated that mutations in target genes are associated with resistance to antituberculous drugs (4, 7, 10, 11, 16). However, most of them have been developed in Mycobacterium tuberculosis strains and limited data are available regarding M. bovis isolates. The aim of this study was to characterize by sequencing the main genes involved in antibiotic resistance in two multidrug-resistant (MDR) M. bovis isolates in a human outbreak detected in a hospital in Madrid that subsequently spread to several countries (5, 6, 15). The isolates were resistant to 11 drugs, but only their rpoB and katG genes have been analyzed so far (1, 14). We studied the first (93/R1) and last (95/R4) M. bovis isolates of this nosocomial outbreak, characterized by spoligotyping as SB0426 (hexacode 63-5F-5E-7F-FF-60 in the database at www.mbovis.org) (1, 13). Several genes involved in resistance to isoniazid (katG, ahpC, inhA, and the oxyR-ahpC intergenic region), rifampin (rpoB), streptomycin (rrs, rpsL), ethambutol (embB), and quinolones (gyrA) were studied. These genes, or fragments of genes, were amplified and sequenced as previously described (12). The sequence analysis revealed polymorphisms in five (ahpC, rpoB, rpsL, embB, and gyrA) out of nine analyzed genes (Table 1). Nucleotide substitutions in four genes cause a change in the encoded amino acid. Two additional synonymous mutations in ahpC and rpsL differentiated the first and last isolates from the outbreak.
Resumo:
A polymorphic inversion that lies on chromosome 17q21 comprises two major haplotype families (H1 and H2) that not only differ in orientation but also in copy-number. Although the processes driving the spread of the inversion-associated lineage (H2) in humans remain unclear, a selective advantage has been proposed for one of its subtypes. Here, we genotyped a large panel of individuals from previously overlooked populations using a custom array with a unique panel of H2-specific single nucleotide polymorphisms and found a patchy distribution of H2 haplotypes in Africa, with North Africans displaying a higher frequency of inverted subtypes, when compared with Sub-Saharan groups. Interestingly, North African H2s were found to be closer to "non-African" chromosomes further supporting that these populations may have diverged more recently from groups outside Africa. Our results uncovered higher diversity within the H2 family than previously described, weakening the hypothesis of a strong selective sweep on all inverted chromosomes and suggesting a rather complex evolutionary history at this locus.
Resumo:
The p38 mitogen‑activated protein kinase (MAPK) signaling pathways have been proposed to participate in the pathological process of cancer by affecting inflammation, proliferation, metastasis and cell survival. A single nucleotide polymorphism (SNP; rs2235356, ‑1628A→G) in the promoter region of the p38β gene has been proposed as a genetic modifier for colorectal cancer (CRC) in a Chinese population. The present study evaluated the susceptibility of patients possessing this SNP to CRC, in addition to determining its association with clinical parameters in Swedish patients with CRC. Using the LightSNiP genotyping assay, this SNP was screened in 389 patients with CRC and 517 control subjects. No significant difference in the genotype distribution or in the allelic frequencies was identified between the two groups nor was any association identified with the clinical parameters. These findings indicate that the ‑1628A→G polymorphism of the p38β gene is not significantly associated with a susceptibility to CRC in a Swedish population.
Resumo:
Chemokines (chemotactic cytokines) promote leukocyte attraction to sites of inflammation and cancer. Certain chemokines promote and regulate neoplastic progression, including metastasis and angiogenesis. One such chemokine, CXCL10, was found to be expressed in colorectal cancer (CRC) tissue. To gain insight into the prognostic significance of CXCL10, we investigated whether the levels of this chemokine were altered in the colorectal tissue or plasma of CRC patients. Using Luminex technology for protein analyses, we observed a significantly higher CXCL10 protein level in cancer tissue compared to that in paired normal tissue. Moreover, significantly higher plasma levels of CXCL10 were detected in patients compared to those in control subjects and the plasma levels of CXCL10 in disseminated disease were found to be significantly higher compared to those in localized disease. The single‑nucleotide polymorphism rs8878, which has been described in exon 4 in the 3'‑untranslated region of the CXCL10 gene, was investigated using a TaqMan system. There were significant differences in genotype distribution and allelic frequencies between CRC patients and control subjects. In conclusion, altered CXCL10 protein concentrations in CRC tissues or plasma and the rs8878 genotype variant of CXCL10 may contribute to the prediction of clinical outcome.
Resumo:
The gammacoronavirus, Infectious Bronchitis Virus (IBV), is a respiratory pathogen of chickens. IBV is a constant threat to poultry production as established vaccines are often ineffective against emerging strains. This requires constant and rapid vaccine production by a process of viral attenuation by egg passage, but the essential forces leading to attenuation in the virus have not yet been characterised. Knowledge of these factors will lead to the development of more effective, rationally attenuated, live vaccines and reduction of the mortality and morbidity caused by this pathogen. M41 CK strain was egg passaged four times many years ago at Houghton Poultry Research Station and stored as M41-CK EP4 (stock virus at The Pirbright Institute since 1992). It was the first egg passage to have its genome pyrosequenced and was therefore used as the baseline reference. The overall aim of this project was to analyse deep sequence data obtained from four IBV isolates (called A, A1, C and D) each originating from the common M41-CK EP4 (ep4) and independently passaged multiple times in embryonated chicken eggs (figure 1.1). Highly polymorphic encoding regions of the IBV genome were then identified which are likely involved in the attenuation process through the formation of independent SNPs and/or SNP clusters. This was then used to direct targeted investigation of SNPs during the attenuation process of the four IBV passages. A previously generated deep sequence dataset was used as a preliminary map of attenuation for one virulent strain of IBV. This investigation showed the nucleocapsid and spike as two highly polymorphic encoding regions within the IBV genome with the highest proportion of SNPs compared to encoding region size. This analysis then led to more focussed studies of the nucleocapsid and spike encoding region with the ultimate aim of mapping key attenuating regions and nucleotide positions. The 454 pyrosequencing data and further investigation of nucleocapsid and spike encoding regions have identified the SNPs present at the same nucleotide positions within analysed A, A1, C and D isolates. These SNPs probably play a crucial role in viral attenuation and universal vaccine production but it is not clear if independent SNPs are also involved in loss of virulence. The majority of SNPs accumulated at different nucleotide positions without further continuation in Sanger sequenced egg passages presenting S2 subunit (spike) and nucleocapsid as polymorphic encoding regions which in nature remain highly conserved.
Resumo:
Feed efficiency and carcass characteristics are late-measured traits. The detection of molecular markers associated with them can help breeding programs to select animals early in life, and to predict breeding values with high accuracy. The objective of this study was to identify polymorphisms in the functional and positional candidate gene NEUROD1 (neurogenic differentiation 1), and investigate their associations with production traits in reference families of Nelore cattle. A total of 585 steers were used, from 34 sires chosen to represent the variability of this breed. By sequencing 14 animals with extreme residual feed intake (RFI) values, seven single nucleotide polymorphisms (SNPs) in NEUROD1 were identified. The investigation of marker effects on the target traits RFI, backfat thickness (BFT), ribeye area (REA), average body weight (ABW), and metabolic body weight (MBW) was performed with a mixed model using the restricted maximum likelihood method. SNP1062, which changes cytosine for guanine, had no significant association with RFI or REA. However, we found an additive effect on ABW (P ≤ 0.05) and MBW (P ≤ 0.05), with an estimated allele substitution effect of -1.59 and -0.93 kg0.75, respectively. A dominant effect of this SNP for BFT was also found (P ≤ 0.010). Our results are the first that identify NEUROD1 as a candidate that affects BFT, ABW, and MBW. Once confirmed, the inclusion of this SNP in dense panels may improve the accuracy of genomic selection for these traits in Nelore beef cattle as this SNP is not currently represented on SNP chips.