833 resultados para ionic liq reconstituted cellulose composite solid support matrix transparency


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this article is to present a method which consists in the development of unit cell numerical models for smart composite materials with piezoelectric fibers made of PZT embedded in a non-piezoelectric matrix (epoxy resin). This method evaluates a globally homogeneous medium equivalent to the original composite, using a representative volume element (RVE). The suitable boundary conditions allow the simulation of all modes of the overall deformation arising from any arbitrary combination of mechanical and electrical loading. In the first instance, the unit cell is applied to predict the effective material coefficients of the transversely isotropic piezoelectric composite with circular cross section fibers. The numerical results are compared to other methods reported in the literature and also to results previously published, in order to evaluate the method proposal. In the second step, the method is applied to calculate the equivalent properties for smart composite materials with square cross section fibers. Results of comparison between different combinations of circular and square fiber geometries, observing the influence of the boundary conditions and arrangements are presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Spin systems in the presence of disorder are described by two sets of degrees of freedom, associated with orientational (spin) and disorder variables, which may be characterized by two distinct relaxation times. Disordered spin models have been mostly investigated in the quenched regime, which is the usual situation in solid state physics, and in which the relaxation time of the disorder variables is much larger than the typical measurement times. In this quenched regime, disorder variables are fixed, and only the orientational variables are duly thermalized. Recent studies in the context of lattice statistical models for the phase diagrams of nematic liquid-crystalline systems have stimulated the interest of going beyond the quenched regime. The phase diagrams predicted by these calculations for a simple Maier-Saupe model turn out to be qualitative different from the quenched case if the two sets of degrees of freedom are allowed to reach thermal equilibrium during the experimental time, which is known as the fully annealed regime. In this work, we develop a transfer matrix formalism to investigate annealed disordered Ising models on two hierarchical structures, the diamond hierarchical lattice (DHL) and the Apollonian network (AN). The calculations follow the same steps used for the analysis of simple uniform systems, which amounts to deriving proper recurrence maps for the thermodynamic and magnetic variables in terms of the generations of the construction of the hierarchical structures. In this context, we may consider different kinds of disorder, and different types of ferromagnetic and anti-ferromagnetic interactions. In the present work, we analyze the effects of dilution, which are produced by the removal of some magnetic ions. The system is treated in a “grand canonical" ensemble. The introduction of two extra fields, related to the concentration of two different types of particles, leads to higher-rank transfer matrices as compared with the formalism for the usual uniform models. Preliminary calculations on a DHL indicate that there is a phase transition for a wide range of dilution concentrations. Ising spin systems on the AN are known to be ferromagnetically ordered at all temperatures; in the presence of dilution, however, there are indications of a disordered (paramagnetic) phase at low concentrations of magnetic ions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction: Endometrial decidualization and associated extracellular matrix (ECM) remodeling are critical events to the establishment of the maternal-fetal interface and successful pregnancy. Here, we investigated the impact of type 1 diabetes on these processes during early embryonic development, in order to contribute to the understanding of the maternal factors associated to diabetic embryopathies. Methods: Alloxan-induced diabetic Swiss female mice were bred after different periods of time to determine the effects of diabetes progression on the development of gestational complications. Furthermore, the analyses focused on decidual development as well as mRNA expression, protein deposition and ultrastructural organization of decidual ECM. Results: Decreased number of implantation sites and decidual dimensions were observed in the group mated 90-110 days after diabetes induction (D), but not in the 50-70D group. Picrosirius staining showed augmentation in the fibrillar collagen network in the 90e110D group and, following immunohistochemical examination, that this was associated with increase in types I and V collagens and decrease in type III collagen and collagen-associated proteoglycans biglycan and lumican. qPCR, however, demonstrated that only type I collagen mRNA levels were increased in the diabetic group. Alterations in the molecular ratio among distinct collagen types and proteoglycans were associated with abnormal collagen fibrillogenesis, analyzed by transmission electron microscopy. Conclusions: Our results support the concept that the development of pregnancy complications is directly related with duration of diabetes (progression of the disease), and that this is a consequence of both systemic factors (i.e. disturbed maternal endocrine-metabolic profile) and uterine factors, including impaired decidualization and ECM remodeling

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ordered mesoporous ZrO2-CeO2 mixed oxides are potential candidates for catalytic applications. These systems, used as anodes in solid oxide fuel cells (SOFC), may lead to better performance of SOFCs, due to an enhancement on surface area, aiming to achieve a lower working temperature. The aim of this studies is to evaluate the reduction capacity of Ni2+ to Ni in ZrO2-x(mol)%CeO2 (x=50 and 90) samples impregnated with 60(wt.)%NiO. The synthesis was made with Zr and Ce chloride precursors, HCl aqueous solution, Pluronic P123, NH4OH to adjust the pH (3-4) and a teflon autoclave to perform a hydrothermal treatment (80oC/48h). The samples were dried and calcined, until 540oC in N2 and 4 hours in air. The NiO impregnation was made with an ethanol dispersion of Ni(NO3)£6H2O. The powder was calcinated in air until 350oC for 2 hours. Temperature-resolved XANES data at the Ni K-edge were collected at the DXAS beam line of the LNLS in transmission mode, using a Si(111) monochromator and a CCD detector. Sample preparation consisted of mixing »6mg of the powder samples with boron nitride and pressing into pellets. The data were acquired during an experiment of temperature programmed reduction (TPR) under a 5% H2/He until 600oC and mixtures of 20%CH4:5%O2/He, at temperatures from 400 to 600oC. All the reactions were monitored with a mass spectrometer. The data was analyzed with a linear combination fit of 2 standards for each valence number using Athena software. The Ni K-edge experiments demonstrated that for both contents of CeO2, NiO embedded in the porous zirconia-ceria matrix reduces at lower temperatures than pure NiO, revealing that the ZrO2-CeO2 support improves the reduction of impregnated NiO. Ni was oxidized to NiO after all reactions with methane and oxygen. Hydrogenated carbonaceous species were detected, but under reducing conditions, the hydrocarbon compounds are removed. The reaction of total oxidation of methane CH4:O2 (1:2 ratio) was observed at lower temperatures (around 400oC) for both samples.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is special interest in the incorporation of metallic nanoparticles in a surrounding dielectric matrix for obtaining composites with desirable characteristics such as for surface plasmon resonance, which can be used in photonics and sensing, and controlled surface electrical conductivity. We investigated nanocomposites produced through metallic ion implantation in insulating substrate, where the implanted metal self-assembles into nanoparticles. During the implantation, the excess of metal atom concentration above the solubility limit leads to nucleation and growth of metal nanoparticles, driven by the temperature and temperature gradients within the implanted sample including the beam-induced thermal characteristics. The nanoparticles nucleate near the maximum of the implantation depth profile (projected range), that can be estimated by computer simulation using the TRIDYN. This is a Monte Carlo simulation program based on the TRIM (Transport and Range of Ions in Matter) code that takes into account compositional changes in the substrate due to two factors: previously implanted dopant atoms, and sputtering of the substrate surface. Our study suggests that the nanoparticles form a bidimentional array buried few nanometers below the substrate surface. More specifically we have studied Au/PMMA (polymethylmethacrylate), Pt/PMMA, Ti/alumina and Au/alumina systems. Transmission electron microscopy of the implanted samples showed the metallic nanoparticles formed in the insulating matrix. The nanocomposites were characterized by measuring the resistivity of the composite layer as function of the dose implanted. These experimental results were compared with a model based on percolation theory, in which electron transport through the composite is explained by conduction through a random resistor network formed by the metallic nanoparticles. Excellent agreement was found between the experimental results and the predictions of the theory. It was possible to conclude, in all cases, that the conductivity process is due only to percolation (when the conducting elements are in geometric contact) and that the contribution from tunneling conduction is negligible.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract. This thesis presents a discussion on a few specific topics regarding the low velocity impact behaviour of laminated composites. These topics were chosen because of their significance as well as the relatively limited attention received so far by the scientific community. The first issue considered is the comparison between the effects induced by a low velocity impact and by a quasi-static indentation experimental test. An analysis of both test conditions is presented, based on the results of experiments carried out on carbon fibre laminates and on numerical computations by a finite element model. It is shown that both quasi-static and dynamic tests led to qualitatively similar failure patterns; three characteristic contact force thresholds, corresponding to the main steps of damage progression, were identified and found to be equal for impact and indentation. On the other hand, an equal energy absorption resulted in a larger delaminated area in quasi-static than in dynamic tests, while the maximum displacement of the impactor (or indentor) was higher in the case of impact, suggesting a probably more severe fibre damage than in indentation. Secondly, the effect of different specimen dimensions and boundary conditions on its impact response was examined. Experimental testing showed that the relationships of delaminated area with two significant impact parameters, the absorbed energy and the maximum contact force, did not depend on the in-plane dimensions and on the support condition of the coupons. The possibility of predicting, by means of a simplified numerical computation, the occurrence of delaminations during a specific impact event is also discussed. A study about the compressive behaviour of impact damaged laminates is also presented. Unlike most of the contributions available about this subject, the results of compression after impact tests on thin laminates are described in which the global specimen buckling was not prevented. Two different quasi-isotropic stacking sequences, as well as two specimen geometries, were considered. It is shown that in the case of rectangular coupons the lay-up can significantly affect the damage induced by impact. Different buckling shapes were observed in laminates with different stacking sequences, in agreement with the results of numerical analysis. In addition, the experiments showed that impact damage can alter the buckling mode of the laminates in certain situations, whereas it did not affect the compressive strength in every case, depending on the buckling shape. Some considerations about the significance of the test method employed are also proposed. Finally, a comprehensive study is presented regarding the influence of pre-existing in-plane loads on the impact response of laminates. Impact events in several conditions, including both tensile and compressive preloads, both uniaxial and biaxial, were analysed by means of numerical finite element simulations; the case of laminates impacted in postbuckling conditions was also considered. The study focused on how the effect of preload varies with the span-to-thickness ratio of the specimen, which was found to be a key parameter. It is shown that a tensile preload has the strongest effect on the peak stresses at low span-to-thickness ratios, leading to a reduction of the minimum impact energy required to initiate damage, whereas this effect tends to disappear as the span-to-thickness ratio increases. On the other hand, a compression preload exhibits the most detrimental effects at medium span-to-thickness ratios, at which the laminate compressive strength and the critical instability load are close to each other, while the influence of preload can be negligible for thin plates or even beneficial for very thick plates. The possibility to obtain a better explanation of the experimental results described in the literature, in view of the present findings, is highlighted. Throughout the thesis the capabilities and limitations of the finite element model, which was implemented in an in-house program, are discussed. The program did not include any damage model of the material. It is shown that, although this kind of analysis can yield accurate results as long as damage has little effect on the overall mechanical properties of a laminate, it can be helpful in explaining some phenomena and also in distinguishing between what can be modelled without taking into account the material degradation and what requires an appropriate simulation of damage. Sommario. Questa tesi presenta una discussione su alcune tematiche specifiche riguardanti il comportamento dei compositi laminati soggetti ad impatto a bassa velocità. Tali tematiche sono state scelte per la loro importanza, oltre che per l’attenzione relativamente limitata ricevuta finora dalla comunità scientifica. La prima delle problematiche considerate è il confronto fra gli effetti prodotti da una prova sperimentale di impatto a bassa velocità e da una prova di indentazione quasi statica. Viene presentata un’analisi di entrambe le condizioni di prova, basata sui risultati di esperimenti condotti su laminati in fibra di carbonio e su calcoli numerici svolti con un modello ad elementi finiti. È mostrato che sia le prove quasi statiche sia quelle dinamiche portano a un danneggiamento con caratteristiche qualitativamente simili; tre valori di soglia caratteristici della forza di contatto, corrispondenti alle fasi principali di progressione del danno, sono stati individuati e stimati uguali per impatto e indentazione. D’altro canto lo stesso assorbimento di energia ha portato ad un’area delaminata maggiore nelle prove statiche rispetto a quelle dinamiche, mentre il massimo spostamento dell’impattatore (o indentatore) è risultato maggiore nel caso dell’impatto, indicando la probabilità di un danneggiamento delle fibre più severo rispetto al caso dell’indentazione. In secondo luogo è stato esaminato l’effetto di diverse dimensioni del provino e diverse condizioni al contorno sulla sua risposta all’impatto. Le prove sperimentali hanno mostrato che le relazioni fra l’area delaminata e due parametri di impatto significativi, l’energia assorbita e la massima forza di contatto, non dipendono dalle dimensioni nel piano dei provini e dalle loro condizioni di supporto. Viene anche discussa la possibilità di prevedere, per mezzo di un calcolo numerico semplificato, il verificarsi di delaminazioni durante un determinato caso di impatto. È presentato anche uno studio sul comportamento a compressione di laminati danneggiati da impatto. Diversamente della maggior parte della letteratura disponibile su questo argomento, vengono qui descritti i risultati di prove di compressione dopo impatto su laminati sottili durante le quali l’instabilità elastica globale dei provini non è stata impedita. Sono state considerate due differenti sequenze di laminazione quasi isotrope, oltre a due geometrie per i provini. Viene mostrato come nel caso di provini rettangolari la sequenza di laminazione possa influenzare sensibilmente il danno prodotto dall’impatto. Due diversi tipi di deformate in condizioni di instabilità sono stati osservati per laminati con diversa laminazione, in accordo con i risultati dell’analisi numerica. Gli esperimenti hanno mostrato inoltre che in certe situazioni il danno da impatto può alterare la deformata che il laminato assume in seguito ad instabilità; d’altra parte tale danno non ha sempre influenzato la resistenza a compressione, a seconda della deformata. Vengono proposte anche alcune considerazioni sulla significatività del metodo di prova utilizzato. Infine viene presentato uno studio esaustivo riguardo all’influenza di carichi membranali preesistenti sulla risposta all’impatto dei laminati. Sono stati analizzati con simulazioni numeriche ad elementi finiti casi di impatto in diverse condizioni di precarico, sia di trazione sia di compressione, sia monoassiali sia biassiali; è stato preso in considerazione anche il caso di laminati impattati in condizioni di postbuckling. Lo studio si è concentrato in particolare sulla dipendenza degli effetti del precarico dal rapporto larghezza-spessore del provino, che si è rivelato un parametro fondamentale. Viene illustrato che un precarico di trazione ha l’effetto più marcato sulle massime tensioni per bassi rapporti larghezza-spessore, portando ad una riduzione della minima energia di impatto necessaria per innescare il danneggiamento, mentre questo effetto tende a scomparire all’aumentare di tale rapporto. Il precarico di compressione evidenzia invece gli effetti più deleteri a rapporti larghezza-spessore intermedi, ai quali la resistenza a compressione del laminato e il suo carico critico di instabilità sono paragonabili, mentre l’influenza del precarico può essere trascurabile per piastre sottili o addirittura benefica per piastre molto spesse. Viene evidenziata la possibilità di trovare una spiegazione più soddisfacente dei risultati sperimentali riportati in letteratura, alla luce del presente contributo. Nel corso della tesi vengono anche discussi le potenzialità ed i limiti del modello ad elementi finiti utilizzato, che è stato implementato in un programma scritto in proprio. Il programma non comprende alcuna modellazione del danneggiamento del materiale. Viene però spiegato come, nonostante questo tipo di analisi possa portare a risultati accurati soltanto finché il danno ha scarsi effetti sulle proprietà meccaniche d’insieme del laminato, esso possa essere utile per spiegare alcuni fenomeni, oltre che per distinguere fra ciò che si può riprodurre senza tenere conto del degrado del materiale e ciò che invece richiede una simulazione adeguata del danneggiamento.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The work of this thesis has been focused on the characterization of metallic membranes for the hydrogen purification from steam reforming process and also of perfluorosulphonic acid ionomeric (PFSI) membranes suitable as electrolytes in fuel cell applications. The experimental study of metallic membranes was divided in three sections: synthesis of palladium and silver palladium coatings on porous ceramic support via electroless deposition (ELD), solubility and diffusivity analysis of hydrogen in palladium based alloys (temperature range between 200 and 400 °C up to 12 bar of pressure) and permeation experiments of pure hydrogen and mixtures containing, besides hydrogen, also nitrogen and methane at high temperatures (up to 600 °C) and pressures (up to 10 bar). Sequential deposition of palladium and silver on to porous alumina tubes by ELD technique was carried out using two different procedures: a stirred batch and a continuous flux method. Pure palladium as well as Pd-Ag membranes were produced: the Pd-Ag membranes’ composition is calculated to be close to 77% Pd and 23% Ag by weight which was the target value that correspond to the best performance of the palladium-based alloys. One of the membranes produced showed an infinite selectivity through hydrogen and relatively high permeability value and is suitable for the potential use as a hydrogen separator. The hydrogen sorption in silver palladium alloys was carried out in a gravimetric system on films produced by ELD technique. In the temperature range inspected, up to 400°C, there is still a lack in literature. The experimental data were analyzed with rigorous equations allowing to calculate the enthalpy and entropy values of the Sieverts’ constant; the results were in very good agreement with the extrapolation made with literature data obtained a lower temperature (up to 150 °C). The information obtained in this study would be directly usable in the modeling of hydrogen permeation in Pd-based systems. Pure and mixed gas permeation tests were performed on Pd-based hydrogen selective membranes at operative conditions close to steam-reforming ones. Two membranes (one produced in this work and another produced by NGK Insulators Japan) showed a virtually infinite selectivity and good permeability. Mixture data revealed the existence of non negligible resistances to hydrogen transport in the gas phase. Even if the decrease of the driving force due to polarization concentration phenomena occurs, in principle, in all membrane-based separation systems endowed with high perm-selectivity, an extensive experimental analysis lack, at the moment, in the palladium-based membrane process in literature. Moreover a new procedure has been introduced for the proper comparison of the mass transport resistance in the gas phase and in the membrane. Another object of study was the water vapor sorption and permeation in PFSI membranes with short and long side chains was also studied; moreover the permeation of gases (i.e. He, N2 and O2) in dry and humid conditions was considered. The water vapor sorption showed strong interactions between the hydrophilic groups and the water as revealed from the hysteresis in the sorption-desorption isotherms and thermo gravimetric analysis. The data obtained were used in the modeling of water vapor permeation, that was described as diffusion-reaction of water molecules, and in the humid gases permeation experiments. In the dry gas experiments the permeability and diffusivity was found to increase with temperature and with the equivalent weight (EW) of the membrane. A linear correlation was drawn between the dry gas permeability and the opposite of the equivalent weight of PFSI membranes, based on which the permeability of pure PTFE is retrieved in the limit of high EW. In the other hand O2 ,N2 and He permeability values was found to increase significantly, and in a similar fashion, with water activity. A model that considers the PFSI membrane as a composite matrix with a hydrophilic and a hydrophobic phase was considered allowing to estimate the variation of gas permeability with relative humidity on the basis of the permeability in the dry PFSI membrane and in pure liquid water.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ion channels are pore-forming proteins that regulate the flow of ions across biological cell membranes. Ion channels are fundamental in generating and regulating the electrical activity of cells in the nervous system and the contraction of muscolar cells. Solid-state nanopores are nanometer-scale pores located in electrically insulating membranes. They can be adopted as detectors of specific molecules in electrolytic solutions. Permeation of ions from one electrolytic solution to another, through a protein channel or a synthetic pore is a process of considerable importance and realistic analysis of the main dependencies of ion current on the geometrical and compositional characteristics of these structures are highly required. The project described by this thesis is an effort to improve the understanding of ion channels by devising methods for computer simulation that can predict channel conductance from channel structure. This project describes theory, algorithms and implementation techniques used to develop a novel 3-D numerical simulator of ion channels and synthetic nanopores based on the Brownian Dynamics technique. This numerical simulator could represent a valid tool for the study of protein ion channel and synthetic nanopores, allowing to investigate at the atomic-level the complex electrostatic interactions that determine channel conductance and ion selectivity. Moreover it will provide insights on how parameters like temperature, applied voltage, and pore shape could influence ion translocation dynamics. Furthermore it will help making predictions of conductance of given channel structures and it will add information like electrostatic potential or ionic concentrations throughout the simulation domain helping the understanding of ion flow through membrane pores.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis is based on three main studies, all dealing with structure-property investigation of semicrystalline polyolefin-based composites. Low density poly(ethylene) (LDPE) and isotactic poly(propylene) (iPP) were chosen as parts of the composites materials and they were investigated either separately (as homoploymers), either in blend systems with the composition LDPE/iPP 80/20 or as filled matrix with layered silicate (montmorillonite). The beneficial influence of adding ethylene-co-propylene polymer of amorphous nature, to low density poly(ethylene)/isotactic poly(propylene) (80/20) blend is demonstrated. This effect is expressed by the major improvement of mechanical properties of ternary blends as examined at a macroscopic size scale by means of tensile measurements. The structure investigation also reveals a clear dependence of the morphology on adding ethylene-copropylene polymer. Both the nature and the content of ethylene-co-propylene polymer affect structure and properties. It is further demonstrated that the extent of improvement in mechanical properties is to be related to the molecular details of the compatibilizer. Combination of high molecular weight and high ethylene content is appropriate for the studied system where the poly(ethylene) plays the role of matrix. A new way to characterize semicrystalline systems by means of Brillouin spectroscopy is presented in this study. By this method based on inelastic light scattering, we were able to measure the high frequency elastic constant (c11) of the two microphases in the case where the spherulites size is exhibit size larger than the size of the probing phonon wavelength. In this considered case, the sample film is inhomogeneous over the relevant length scales and there is an access to the transverse phonon in the crystalline phase yielding the elastic constant c44 as well. Isotactic poly(propylene) is well suited for this type of investigation since its morphology can be tailored through different thermal treatment from the melt. Two distinctly different types of films were used; quenched (low crystallinity) and annealed (high crystallinity). The Brillouin scattering data are discussed with respect to the spherulites size, lamellae thickness, long period, crystallinity degree and well documented by AFM images. The structure and the properties of isotactic poly(propylene) matrix modified by inorganic layered silicate, montmorillonite, are discussed with respect to the clay content. Isotactic poly(propylene)-graft-maleic anhydride was used as compatibilizer. It is clearly demonstrated that the property enhancement is largely due to the ability of layered silicate to exfoliate. The intimate dispersion of the nanometer-thick silicate result from a delicate balance of the content ratio between the isotactic poly(propylene)-graft-maleic anhydride compatibilizer and the inorganic clay.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract Poly(L-glutamic acid) (PLGA) was synthesized by living anionic ring-opening polymerization of the NCA monomer, which was obtained by reacting diphosgene with an amino acid derivative. The chemical structures and thermal properties were characterized by 1H-NMR, 13C-NMR, TGA and DSC. XRD powder patterns found to be amorphous for all polymers obtained. The molecular weights could be determined under severe limitations due to low solubility and high aggregation tendency. The secondary structure of the PLGA films was analyzed in the solid state by IR spectroscopy; the order was determined mainly by XRD. Uniform bulk films (1-5 µm) were produced by drop-casting of PLGA solutions in TFA on silica. The XRD film analysis indicated the absence of a long range order or an orientation even if a helical microstructure was confirmed by IR spectroscopy. The coil solvent TFA delivered constantly a helical or a β-sheet structure in the solid state depending on the water content of the solvent which was observed for the first time to exhibit a high influence on the crystallization process for PLGA. Temperature dependent in-situ IR measurements were examined to analyze if a helix-coil transition occurs, but there could be no solvent system determined, which resulted in a disordered coil structure in the solid state. General parameters like solvent systems, evaporation conditions, concentration, substrates etc. were analyzed. New crystallizations were obtained on silica prepared by drop-casting of solutions of PLGA in DMF, DMA, TMU, NMP, and pyridine/water mixtures, respectively. PSCBC in DMF, CDCl3/TFA-d, and PSBC in CDCl3/TFA-d exhibited the same crystalline diffraction patterns like PLGA. The long range order in the X-ray diffraction pattern is proven by extremely sharp crystalline signals, which are not changing the shape or the position of the peak by increasing the temperature up to 160°C. The substrate seems to play a decisive role because the crystalline structures were not obtainable on glass. The crystal structure consists probably of two different layered structures based on the intensity ratios of the two series of crystalline signals in the X-ray diffraction patterns. The source of the layered structure remains unclear and needs further studies to investigate the spatial arrangement of the chains in more detail. The secondary structure was still not changing upon heating even if a highly crystalline diffraction pattern occurs. Concluding that even the newly investigated crystallization did not show a helix-coil transition in the solid state by annealing, the phenomenon known in solution has to be claimed as unachievable in the solid state based on the results of this work. A remaining open question represents the observation that the same crystalline pattern can be reproducibly prepared with exhibiting two different ordered secondary structures (helix and β-sheet). After the investigation that the evaporation time cannot be decisive for the crystal growth, the choice of a strong hydrogen bonding interrupting solvent is most probably the key to support and induce the crystallization process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Research on thin nanostructured crystalline TiO2 films has attracted considerable interests because of their intriguing physical properties and potential applications in photovoltaics. Nanostructured TiO2 film plays an important role in the TiO2 based dye-sensitized solar cells because they act as a substrate for the adsorption of dye molecules and a matrix for the transportation of electrons as well. Thus they can influence the solar cell performance significantly. Consequently, the control of the morphology including the shape, size and size distribution of the TiO2 nanostructures is critical to tune and optimize the performance of the solar cells. To control the TiO2 morphology, a strategy using amphiphilic block copolymer as templating agent coupled with sol-gel chemistry has been applied. Especially, a good-poor solvent pair induced phase separation process has been developed to guide the microphase separation behavior of the block copolymers. The amphiphilic block copolymers used include polystyrene-block-poly (ethylene oxide) (PS-b-PEO), poly (methyl methacrylate)-block-poly (ethylene oxide) (PMMA-b-PEO), and poly (ethylene oxide)-block-polystyrene-block-poly (ethylene oxide) (PEO-b-PS-b-PEO). The block copolymer undergoes a good-poor-solvent pair induced phase separation in a mixed solution of 1, 4-dioxane or N, N’-dimethyl formamide (DMF), concentrated hydrochloric acid (HCl) and Titanium tetraisopropoxide (TTIP). Specifically, in the system of PS-b-PEO, a morphology phase diagram of the inorganic-copolymer composite films was mapped by adjusting the weight fractions among 1, 4-dioxane, HCl, and TTIP in solution. The amorphous TiO2 within the titania-block copolymer composite films was crystallized by calcination at temperatures above 400C, where the organic block copolymer was simultaneously burned away. This strategy is further extended to other amphiphilic block copolymers of PMMA-b-PEO and PEO-b-PS-b-PEO, where the morphology of TiO2 films can also be controlled. The local and long range structures of the titania films were investigated by the combination of imaging techniques (AFM, SEM) and x-ray scattering techniques (x-ray reflectivity and grazing incidence small-angle x-ray scattering). Based on the knowledge of the morphology control, the crystalline TiO2 nanostructured films with different morphologies were introduced into solid state dye-sensitized solar cells. It has been found that all of the morphologies help to improve the performance of the solar cells. Especially, clustered nanoparticles, worm-like structures, foam-like structures, large collapsed nanovesicles show more pronounced performance improvement than other morphologies such as nanowires, flakes, and nanogranulars.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present work aims for investigate the influence of electrospun Nylon 6,6 nanofibrous mat on the behavior of composite laminates. The main idea is that nanofibrous interleaved into particular ply-to-ply interfaces of a laminate can lead to significant improvements of mechanical properties and delamination/damage resistance. Experimental campaigns were performed to investigate how nanofibers affect both the static and dynamic behavior of the laminate in which they are interleaved. Fracture mechanics tests were initially performed on virgin and 8 different configuration of nanomodified specimens. The purposes of this first step of the work are to understand which geometrical parameters of the nanointerleave influence the behavior of the laminate and, to find the optimal architecture of the nanofibrous mat in order to obtain the best reinforcement. In particular, 3 morphological parameters are investigated: nanofibers diameter, nanofibers orientation and thickness of the reinforce. Two different values for each parameter have been used, and it leads to 8 different configurations of nanoreinforce. Acoustic Emission technique is also used to monitor the tests. Once the optimum configuration has been found, attention is focused on the mechanism of reinforce played by the nanofibers during static and dynamic tests. Low velocity impacts and free decay tests are performed to attest the effect of nanointerlayers and the reinforce mechanism during the dynamic loads. Bump tests are performed before and after the impact on virgin and two different nanomodified laminates configurations. The authors focused their attention on: vibrational behavior, low velocity impact response and post-impact vibration behavior of the nano-interleaved laminates with respect to the response of non-nanomodified ones. Experiments attest that nanofibers significantly strength the delamination resistance of the laminates and increase some mechanical properties. It is demonstrated that the nanofibers are capable to continue to carry on the loads even when the matrix around them is broken.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The European Union set the ambitious target of reducing energy consumption by 20% within 2020. This goal demands a tremendous change in how we generate and consume energy and urgently calls for an aggressive policy on energy efficiency. Since 19% of the European electrical energy is used for lighting, considerable savings can be achieved with the development of novel and more efficient lighting systems. In this thesis, accomplished in the frame of the EU project CELLO, I report some selected goals we achieved attempting to develop highly efficient, flat, low cost and flexible light sources using Light-Emitting Electrochemical Cells (LECs), based on ionic cyclometalated iridium(III) complexes. After an extensive introduction about LECs and solid-state lighting in general, I focus on the research we carried out on cyclometalated iridium(III) complexes displaying deep-blue emission, which has turned out to be a rather challenging task. In order to demonstrate the wide versatility of this class of compounds, I also report a case in which some tailored iridium(III) complexes act as near-infrared (NIR) sources. In fact, standard NIR emitting devices are typically expensive and, also in this case, LECs could serve as low-cost alternatives in fields were NIR luminescence is crucial, such as telecommunications and bioimaging. Since LECs are based on only one active material, in the last chapter I stress the importance of an integrated approach toward the right selection of suitable emitters not only from the photophysical, but also from the point of view of material science. An iridium(III) complex, once in the device, is interacting with ionic liquids, metal cathodes, electric fields, etc. All these interactions should be taken in to account if Europe really wants to implement more efficient lighting paradigms, generating light beyond research labs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fibre-Reinforced-Plastics are composite materials composed by thin fibres with high mechanical properties, made to work together with a cohesive plastic matrix. The huge advantages of fibre reinforced plastics over traditional materials are their high specific mechanical properties i.e. high stiffness and strength to weight ratios. This kind of composite materials is the most disruptive innovation in the structural materials field seen in recent years and the areas of potential application are still many. However, there are few aspects which limit their growth: on the one hand the information available about their properties and long term behaviour is still scarce, especially if compared with traditional materials for which there has been developed an extended database through years of use and research. On the other hand, the technologies of production are still not as developed as the ones available to form plastics, metals and other traditional materials. A third aspect is that the new properties presented by these materials e.g. their anisotropy, difficult the design of components. This thesis will provide several case-studies with advancements regarding the three limitations mentioned. In particular, the long term mechanical properties have been studied through an experimental analysis of the impact of seawater on GFRP. Regarding production methods, the pre-impregnated cured in autoclave process was considered: a rapid tooling method to produce moulds will be presented, and a study about the production of thick components. Also, two liquid composite moulding methods will be presented, with a case-study regarding a large component with sandwich structure that was produced with the Vacuum-Assisted-Resin-Infusion method, and a case-study regarding a thick con-rod beam that was produced with the Resin-Transfer-Moulding process. The final case-study will analyse the loads acting during the use of a particular sportive component, made with FRP layers and a sandwich structure, practical design rules will be provided.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, new tools in atmospheric pollutant sampling and analysis were applied in order to go deeper in source apportionment study. The project was developed mainly by the study of atmospheric emission sources in a suburban area influenced by a municipal solid waste incinerator (MSWI), a medium-sized coastal tourist town and a motorway. Two main research lines were followed. For what concerns the first line, the potentiality of the use of PM samplers coupled with a wind select sensor was assessed. Results showed that they may be a valid support in source apportionment studies. However, meteorological and territorial conditions could strongly affect the results. Moreover, new markers were investigated, particularly focusing on the processes of biomass burning. OC revealed a good biomass combustion process indicator, as well as all determined organic compounds. Among metals, lead and aluminium are well related to the biomass combustion. Surprisingly PM was not enriched of potassium during bonfire event. The second research line consists on the application of Positive Matrix factorization (PMF), a new statistical tool in data analysis. This new technique was applied to datasets which refer to different time resolution data. PMF application to atmospheric deposition fluxes identified six main sources affecting the area. The incinerator’s relative contribution seemed to be negligible. PMF analysis was then applied to PM2.5 collected with samplers coupled with a wind select sensor. The higher number of determined environmental indicators allowed to obtain more detailed results on the sources affecting the area. Vehicular traffic revealed the source of greatest concern for the study area. Also in this case, incinerator’s relative contribution seemed to be negligible. Finally, the application of PMF analysis to hourly aerosol data demonstrated that the higher the temporal resolution of the data was, the more the source profiles were close to the real one.