983 resultados para iodinated contrast agents


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study shows that the relaxivity and optical properties of functionalised lanthanide-DTPA-bis-amide complexes (lanthanide=Gd3+ and Eu3+, DTPA=diethylene triamine pentaacetic acid) can be successfully modulated by addition of specific anions, without direct Ln3+/anion coordination. Zinc(II)-dipicolylamine moieties, which are known to bind strongly to phosphates, were introduced in the amide “arms” of these ligands, and the interaction of the resulting Gd–Zn2 complexes with a range of anions was screened by using indicator displacement assays (IDAs). Considerable selectivity for polyphosphorylated species (such as pyrophosphate and adenosine-5′-triphosphate (ATP)) over a range of other anions (including monophosphorylated anions) was apparent. In addition, we show that pyrophosphate modulates the relaxivity of the gadolinium(III) complex, this modulation being sufficiently large to be observed in imaging experiments. To establish the binding mode of the pyrophosphate and gain insight into the origin of the relaxometric modulation, a series of studies including UV/Vis and emission spectroscopy, luminescence lifetime measurements in H2O and D2O, 17O and 31P NMR spectroscopy and nuclear magnetic resonance dispersion (NMRD) studies were carried out.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An evaluation of the change in perceived image contrast with changes in displayed image size was carried out. This was achieved using data from four psychophysical investigations, which employed techniques to match the perceived contrast of displayed images of five different sizes. A total of twenty-four S-shape polynomial functions were created and applied to every original test image to produce images with different contrast levels. The objective contrast related to each function was evaluated from the gradient of the mid-section of the curve (gamma). The manipulation technique took into account published gamma differences that produced a just-noticeable-difference (JND) in perceived contrast. The filters were designed to achieve approximately half a JND, whilst keeping the mean image luminance unaltered. The processed images were then used as test series in a contrast matching experiment. Sixty-four natural scenes, with varying scene content acquired under various illumination conditions, were selected from a larger set captured for the purpose. Results showed that the degree of change in contrast between images of different sizes varied with scene content but was not as important as equivalent perceived changes in sharpness.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

What is the best luminance contrast weighting-function for image quality optimization? Traditionally measured contrast sensitivity functions (CSFs), have been often used as weighting-functions in image quality and difference metrics. Such weightings have been shown to result in increased sharpness and perceived quality of test images. We suggest contextual CSFs (cCSFs) and contextual discrimination functions (cVPFs) should provide bases for further improvement, since these are directly measured from pictorial scenes, modeling threshold and suprathreshold sensitivities within the context of complex masking information. Image quality assessment is understood to require detection and discrimination of masked signals, making contextual sensitivity and discrimination functions directly relevant. In this investigation, test images are weighted with a traditional CSF, cCSF, cVPF and a constant function. Controlled mutations of these functions are also applied as weighting-functions, seeking the optimal spatial frequency band weighting for quality optimization. Image quality, sharpness and naturalness are then assessed in two-alternative forced-choice psychophysical tests. We show that maximal quality for our test images, results from cCSFs and cVPFs, mutated to boost contrast in the higher visible frequencies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Much recent commentary on citizen media has focused on online platforms as means through which citizens may disseminate self-produced media content that challenges dominant discourses or makes visible hidden realities. This chapter goes beyond a concern with media content to explore the much broader range of socially situated practices that develop around citizen media. Drawing on Couldry’s proposal for a practice paradigm in media research, it suggests shifting the focus from ‘citizen media’ to ‘citizen media practices’ and demonstrates, through a case study of communication activism in the World Social Forum, how this framework can bring into view a broad range of citizen media practices (beyond those directly concerned with the production and circulation of media content), the different forms of agency that such practices make possible, and the social fabric they can help generate. I conclude by arguing that a practice framework necessitates a rethink of the way that the concept of (counter-) publics is used in the context of citizen media. Citizen media practices of the kind described here can be understood not only as practices of ‘making public’ previously unreported issues and perspectives, but as practices of public¬-making: practices that support the formation of publics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electricity markets are complex environments, involving numerous entities trying to obtain the best advantages and profits while limited by power-network characteristics and constraints.1 The restructuring and consequent deregulation of electricity markets introduced a new economic dimension to the power industry. Some observers have criticized the restructuring process, however, because it has failed to improve market efficiency and has complicated the assurance of reliability and fairness of operations. To study and understand this type of market, we developed the Multiagent Simulator of Competitive Electricity Markets (MASCEM) platform based on multiagent simulation. The MASCEM multiagent model includes players with strategies for bid definition, acting in forward, day-ahead, and balancing markets and considering both simple and complex bids. Our goal with MASCEM was to simulate as many market models and player types as possible. This approach makes MASCEM both a short- and mediumterm simulation as well as a tool to support long-term decisions, such as those taken by regulators. This article proposes a new methodology integrated in MASCEM for bid definition in electricity markets. This methodology uses reinforcement learning algorithms to let players perceive changes in the environment, thus helping them react to the dynamic environment and adapt their bids accordingly.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Competitive electricity markets are complex environments, involving a large number of different entities, playing in a dynamic scene to obtain the best advantages and profits. MASCEM is an electricity market simulator able to model market players and simulate their operation in the market. As market players are complex entities, having their characteristics and objectives, making their decisions and interacting with other players, a multi-agent architecture is used and proved to be adequate. MASCEM players have learning capabilities and different risk preferences. They are able to refine their strategies according to their past experience (both real and simulated) and considering other agents’ behavior. Agents’ behavior is also subject to its risk preferences.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper consist in the establishment of a Virtual Producer/Consumer Agent (VPCA) in order to optimize the integrated management of distributed energy resources and to improve and control Demand Side Management DSM) and its aggregated loads. The paper presents the VPCA architecture and the proposed function-based organization to be used in order to coordinate the several generation technologies, the different load types and storage systems. This VPCA organization uses a frame work based on data mining techniques to characterize the costumers. The paper includes results of several experimental tests cases, using real data and taking into account electricity generation resources as well as consumption data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main purpose of this paper is to propose a Multi-Agent Autonomic and Bio-Inspired based framework with selfmanaging capabilities to solve complex scheduling problems using cooperative negotiation. Scheduling resolution requires the intervention of highly skilled human problem-solvers. This is a very hard and challenging domain because current systems are becoming more and more complex, distributed, interconnected and subject to rapidly changing. A natural Autonomic Computing (AC) evolution in relation to Current Computing is to provide systems with Self-Managing ability with a minimum human interference.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electricity markets are complex environments with very particular characteristics. A critical issue regarding these specific characteristics concerns the constant changes they are subject to. This is a result of the electricity markets’ restructuring, which was performed so that the competitiveness could be increased, but it also had exponential implications in the increase of the complexity and unpredictability in those markets scope. The constant growth in markets unpredictability resulted in an amplified need for market intervenient entities in foreseeing market behaviour. The need for understanding the market mechanisms and how the involved players’ interaction affects the outcomes of the markets, contributed to the growth of usage of simulation tools. Multi-agent based software is particularly well fitted to analyze dynamic and adaptive systems with complex interactions among its constituents, such as electricity markets. This dissertation presents ALBidS – Adaptive Learning strategic Bidding System, a multiagent system created to provide decision support to market negotiating players. This system is integrated with the MASCEM electricity market simulator, so that its advantage in supporting a market player can be tested using cases based on real markets’ data. ALBidS considers several different methodologies based on very distinct approaches, to provide alternative suggestions of which are the best actions for the supported player to perform. The approach chosen as the players’ actual action is selected by the employment of reinforcement learning algorithms, which for each different situation, simulation circumstances and context, decides which proposed action is the one with higher possibility of achieving the most success. Some of the considered approaches are supported by a mechanism that creates profiles of competitor players. These profiles are built accordingly to their observed past actions and reactions when faced with specific situations, such as success and failure. The system’s context awareness and simulation circumstances analysis, both in terms of results performance and execution time adaptation, are complementary mechanisms, which endow ALBidS with further adaptation and learning capabilities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electricity markets are complex environments, involving a large number of different entities, playing in a dynamic scene to obtain the best advantages and profits. MASCEM (Multi-Agent System for Competitive Electricity Markets) is a multi-agent electricity market simulator that models market players and simulates their operation in the market. Market players are entities with specific characteristics and objectives, making their decisions and interacting with other players. This paper presents a methodology to provide decision support to electricity market negotiating players. This model allows integrating different strategic approaches for electricity market negotiations, and choosing the most appropriate one at each time, for each different negotiation context. This methodology is integrated in ALBidS (Adaptive Learning strategic Bidding System) – a multiagent system that provides decision support to MASCEM's negotiating agents so that they can properly achieve their goals. ALBidS uses artificial intelligence methodologies and data analysis algorithms to provide effective adaptive learning capabilities to such negotiating entities. The main contribution is provided by a methodology that combines several distinct strategies to build actions proposals, so that the best can be chosen at each time, depending on the context and simulation circumstances. The choosing process includes reinforcement learning algorithms, a mechanism for negotiating contexts analysis, a mechanism for the management of the efficiency/effectiveness balance of the system, and a mechanism for competitor players' profiles definition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A Work Project, presented as part of the requirements for the Award of a Masters Degree in Management from the NOVA – School of Business and Economics

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertation presented to obtain the Ph.D degree in Biochemistry

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Economics is a social science which, therefore, focuses on people and on the decisions they make, be it in an individual context, or in group situations. It studies human choices, in face of needs to be fulfilled, and a limited amount of resources to fulfill them. For a long time, there was a convergence between the normative and positive views of human behavior, in that the ideal and predicted decisions of agents in economic models were entangled in one single concept. That is, it was assumed that the best that could be done in each situation was exactly the choice that would prevail. Or, at least, that the facts that economics needed to explain could be understood in the light of models in which individual agents act as if they are able to make ideal decisions. However, in the last decades, the complexity of the environment in which economic decisions are made and the limits on the ability of agents to deal with it have been recognized, and incorporated into models of decision making in what came to be known as the bounded rationality paradigm. This was triggered by the incapacity of the unboundedly rationality paradigm to explain observed phenomena and behavior. This thesis contributes to the literature in three different ways. Chapter 1 is a survey on bounded rationality, which gathers and organizes the contributions to the field since Simon (1955) first recognized the necessity to account for the limits on human rationality. The focus of the survey is on theoretical work rather than the experimental literature which presents evidence of actual behavior that differs from what classic rationality predicts. The general framework is as follows. Given a set of exogenous variables, the economic agent needs to choose an element from the choice set that is avail- able to him, in order to optimize the expected value of an objective function (assuming his preferences are representable by such a function). If this problem is too complex for the agent to deal with, one or more of its elements is simplified. Each bounded rationality theory is categorized according to the most relevant element it simplifes. Chapter 2 proposes a novel theory of bounded rationality. Much in the same fashion as Conlisk (1980) and Gabaix (2014), we assume that thinking is costly in the sense that agents have to pay a cost for performing mental operations. In our model, if they choose not to think, such cost is avoided, but they are left with a single alternative, labeled the default choice. We exemplify the idea with a very simple model of consumer choice and identify the concept of isofin curves, i.e., sets of default choices which generate the same utility net of thinking cost. Then, we apply the idea to a linear symmetric Cournot duopoly, in which the default choice can be interpreted as the most natural quantity to be produced in the market. We find that, as the thinking cost increases, the number of firms thinking in equilibrium decreases. More interestingly, for intermediate levels of thinking cost, an equilibrium in which one of the firms chooses the default quantity and the other best responds to it exists, generating asymmetric choices in a symmetric model. Our model is able to explain well-known regularities identified in the Cournot experimental literature, such as the adoption of different strategies by players (Huck et al. , 1999), the inter temporal rigidity of choices (Bosch-Dom enech & Vriend, 2003) and the dispersion of quantities in the context of di cult decision making (Bosch-Dom enech & Vriend, 2003). Chapter 3 applies a model of bounded rationality in a game-theoretic set- ting to the well-known turnout paradox in large elections, pivotal probabilities vanish very quickly and no one should vote, in sharp contrast with the ob- served high levels of turnout. Inspired by the concept of rhizomatic thinking, introduced by Bravo-Furtado & Côrte-Real (2009a), we assume that each per- son is self-delusional in the sense that, when making a decision, she believes that a fraction of the people who support the same party decides alike, even if no communication is established between them. This kind of belief simplifies the decision of the agent, as it reduces the number of players he believes to be playing against { it is thus a bounded rationality approach. Studying a two-party first-past-the-post election with a continuum of self-delusional agents, we show that the turnout rate is positive in all the possible equilibria, and that it can be as high as 100%. The game displays multiple equilibria, at least one of which entails a victory of the bigger party. The smaller one may also win, provided its relative size is not too small; more self-delusional voters in the minority party decreases this threshold size. Our model is able to explain some empirical facts, such as the possibility that a close election leads to low turnout (Geys, 2006), a lower margin of victory when turnout is higher (Geys, 2006) and high turnout rates favoring the minority (Bernhagen & Marsh, 1997).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this work is to develop a practicable approach for Telecom firms to manage the credit risk exposition to their commercial agents’ network. Particularly it will try to approach the problem of credit concession to clients’ from a corporation perspective and explore the particular scenario of agents that are part of the commercial chain of the corporation and therefore are not end-users. The agents’ network that served as a model for the presented study is composed by companies that, at the same time, are both clients and suppliers of the Telecommunication Company. In that sense the credit exposition analysis must took into consideration all financial fluxes, both inbound and outbound. The current strain on the Financial Sector in Portugal, and other peripheral European economies, combined with the high leverage situation of most companies, generates an environment prone to credit default risk. Due to these circumstances managing credit risk exposure is becoming increasingly a critical function for every company Financial Department. The approach designed in the current study combined two traditional risk monitoring tools: credit risk scoring and credit limitation policies. The objective was to design a new credit monitoring framework that is more flexible, uses both external and internal relationship history to assess risk and takes into consideration commercial objectives inside the agents’ network. Although not explored at length, the blueprint of a Credit Governance model was created for implementing the new credit monitoring framework inside the telecom firm. The Telecom Company that served as a model for the present work decided to implement the new Credit Monitoring framework after this was presented to its Executive Commission.