863 resultados para intelligent manufacturing systems


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Building Management Systems (BMS) are widely adopted in modern buildings around the world in order to provide high-quality building services, and reduce the running cost of the building. However, most BMS are functionality-oriented and do not consider user personalization. The aim of this research is to capture and represent building management rules using organizational semiotics methods. We implement Semantic Analysis, which determines semantic units in building management and their relationship patterns of behaviour, and Norm Analysis, which extracts and specifies the norms that establish how and when these management actions occur. Finally, we propose a multi-agent framework for norm based building management. This framework contributes to the design domain of intelligent building management system by defining a set of behaviour patterns, and the norms that govern the real-time behaviour in a building.

Relevância:

40.00% 40.00%

Publicador:

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In a global economy, manufacturers mainly compete with cost efficiency of production, as the price of raw materials are similar worldwide. Heavy industry has two big issues to deal with. On the one hand there is lots of data which needs to be analyzed in an effective manner, and on the other hand making big improvements via investments in cooperate structure or new machinery is neither economically nor physically viable. Machine learning offers a promising way for manufacturers to address both these problems as they are in an excellent position to employ learning techniques with their massive resource of historical production data. However, choosing modelling a strategy in this setting is far from trivial and this is the objective of this article. The article investigates characteristics of the most popular classifiers used in industry today. Support Vector Machines, Multilayer Perceptron, Decision Trees, Random Forests, and the meta-algorithms Bagging and Boosting are mainly investigated in this work. Lessons from real-world implementations of these learners are also provided together with future directions when different learners are expected to perform well. The importance of feature selection and relevant selection methods in an industrial setting are further investigated. Performance metrics have also been discussed for the sake of completion.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The advantages offered by the electronic component light emitting diode ( LED) have caused a quick and wide application of this device in replacement of incandescent lights. However, in its combined application, the relationship between the design variables and the desired effect or result is very complex and it becomes difficult to model by conventional techniques. This work consists of the development of a technique, through artificial neural networks, to make possible to obtain the luminous intensity values of brake lights using LEDs from design data. (C) 2005 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper deals with the design of a network-on-chip reconfigurable pseudorandom number generation unit that can map and execute meta-heuristic algorithms in hardware. The unit can be configured to implement one of the following five linear generator algorithms: a multiplicative congruential, a mixed congruential, a standard multiple recursive, a mixed multiple recursive, and a multiply-with-carry. The generation unit can be used both as a pseudorandom and a message passing-based server, which is able to produce pseudorandom numbers on demand, sending them to the network-on-chip blocks that originate the service request. The generator architecture has been mapped to a field programmable gate array, and showed that millions of numbers in 32-, 64-, 96-, or 128-bit formats can be produced in tens of milliseconds. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The advantages offered by the electronic component LED (Light Emitting Diode) have caused a quick and wide application of this device in replacement of incandescent lights. However, in its combined application, the relationship between the design variables and the desired effect or result is very complex and it becomes difficult to model by conventional techniques. This work consists of the development of a technique, through artificial neural networks, to make possible to obtain the luminous intensity values of brake lights using LEDs from design data.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Domains where knowledge representation is too complex to be described analytically and in a deterministic way is very common in the petroleum industry, particularly in the field of exploration and production. In these domains, applications of artificial intelligence techniques are very suitable, especially in cases where the preservation of corporate and technical knowledge is important. The Laboratory for Research on Artificial Intelligence Applied to Petroleum Engineering (LIAP) at Unicamp, has, during the last 10 years, dedicated research efforts to build intelligent systems in well drilling and petroleum production fields. In the following sections, recent advances in intelligent systems, under development in the research laboratory, are described. (C) 2001 Published by Elsevier B.V. B.V.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

An intelligent system that emulates human decision behaviour based on visual data acquisition is proposed. The approach is useful in applications where images are used to supply information to specialists who will choose suitable actions. An artificial neural classifier aids a fuzzy decision support system to deal with uncertainty and imprecision present in available information. Advantages of both techniques are exploited complementarily. As an example, this method was applied in automatic focus checking and adjustment in video monitor manufacturing. Copyright © 2005 IFAC.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The main objective involved with this paper consists of presenting the results obtained from the application of artificial neural networks and statistical tools in the automatic identification and classification process of faults in electric power distribution systems. The developed techniques to treat the proposed problem have used, in an integrated way, several approaches that can contribute to the successful detection process of faults, aiming that it is carried out in a reliable and safe way. The compilations of the results obtained from practical experiments accomplished in a pilot distribution feeder have demonstrated that the developed techniques provide accurate results, identifying and classifying efficiently the several occurrences of faults observed in the feeder. © 2006 IEEE.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Reasoning under uncertainty is a human capacity that in software system is necessary and often hidden. Argumentation theory and logic make explicit non-monotonic information in order to enable automatic forms of reasoning under uncertainty. In human organization Distributed Cognition and Activity Theory explain how artifacts are fundamental in all cognitive process. Then, in this thesis we search to understand the use of cognitive artifacts in an new argumentation framework for an agent-based artificial society.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Choosing an appropriate accounting system for manufacturing has always been a challenge for managers. In this article we try to compare three accounting systems designed since 1980 to address problems of traditional accounting system. In the first place we are going to present a short overview on background and definition of three accounting systems: Activity Based costing, Time-Driven Activity Based Costing and Lean Accounting. Comparisons are made based on the three basic roles of information generated by accounting systems: financial reporting, decision making, and operational control and improvement. The analysis in this paper reveals how decisions are made over the value stream in the companies using Lean Accounting while decisions under the ABC Accounting system are taken at individual product level, and finally we will show how TD-ABC covers both product and process levels for decision making. In addition, this paper shows the importance of nonfinancial measures for operational control and improvement under the Lean Accounting and TD-ABC methods whereas ABC relies mostly on financial measures in this context.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Providing security to the emerging field of ambient intelligence will be difficult if we rely only on existing techniques, given their dynamic and heterogeneous nature. Moreover, security demands of these systems are expected to grow, as many applications will require accurate context modeling. In this work we propose an enhancement to the reputation systems traditionally deployed for securing these systems. Different anomaly detectors are combined using the immunological paradigm to optimize reputation system performance in response to evolving security requirements. As an example, the experiments show how a combination of detectors based on unsupervised techniques (self-organizing maps and genetic algorithms) can help to significantly reduce the global response time of the reputation system. The proposed solution offers many benefits: scalability, fast response to adversarial activities, ability to detect unknown attacks, high adaptability, and high ability in detecting and confining attacks. For these reasons, we believe that our solution is capable of coping with the dynamism of ambient intelligence systems and the growing requirements of security demands.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Cooperative systems are suitable for many types of applications and nowadays these system are vastly used to improve a previously defined system or to coordinate multiple devices working together. This paper provides an alternative to improve the reliability of a previous intelligent identification system. The proposed approach implements a cooperative model based on multi-agent architecture. This new system is composed of several radar-based systems which identify a detected object and transmit its own partial result by implementing several agents and by using a wireless network to transfer data. The proposed topology is a centralized architecture where the coordinator device is in charge of providing the final identification result depending on the group behavior. In order to find the final outcome, three different mechanisms are introduced. The simplest one is based on majority voting whereas the others use two different weighting voting procedures, both providing the system with learning capabilities. Using an appropriate network configuration, the success rate can be improved from the initial 80% up to more than 90%.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The current trend in the evolution of sensor systems seeks ways to provide more accuracy and resolution, while at the same time decreasing the size and power consumption. The use of Field Programmable Gate Arrays (FPGAs) provides specific reprogrammable hardware technology that can be properly exploited to obtain a reconfigurable sensor system. This adaptation capability enables the implementation of complex applications using the partial reconfigurability at a very low-power consumption. For highly demanding tasks FPGAs have been favored due to the high efficiency provided by their architectural flexibility (parallelism, on-chip memory, etc.), reconfigurability and superb performance in the development of algorithms. FPGAs have improved the performance of sensor systems and have triggered a clear increase in their use in new fields of application. A new generation of smarter, reconfigurable and lower power consumption sensors is being developed in Spain based on FPGAs. In this paper, a review of these developments is presented, describing as well the FPGA technologies employed by the different research groups and providing an overview of future research within this field.