776 resultados para individual auditor
Resumo:
To date there has been no systematic study of the relationship between individuals’ opinions of different institutions and their perceptions of world affairs. This article tries to fill this gap by using a large cross-country data set comprising nine EU members and seven Asian nations and instrumental variable bivariate probit regression analysis. Controlling for a host of factors, the article shows that individuals’ confidence in multilateral institutions affects their perceptions of whether or not their country is being treated fairly in international affairs. This finding expands upon both theoretical work on multilateral institutions that has focused on state actors’ rationale for engaging in multilateral cooperation and empirical work that has treated confidence in multilateral institutions as a dependent variable. The article also shows that individuals’ confidence in different international organizations has undifferentiated effects on their perceptions of whether or not their country is being treated fairly in international affairs, though individuals more knowledgeable about international affairs exhibit slightly different attitudes. Finally, the article demonstrates significant differences in opinion across Europe and Asia.
Resumo:
We present here a straightforward method which can be used to obtain a quantitative indication of an individual research output for an academic. Different versions, selections and options are presented to enable a user to easily calculate values both for stand-alone papers and overall for the collection of outputs for a person. The procedure is particularly useful as a metric to give a quantitative indication of the research output of a person over a time window. Examples are included to show how the method works in practice and how it compares to alternative techniques.
Resumo:
Population modelling is increasingly recognised as a useful tool for pesticide risk assessment. For vertebrates that may ingest pesticides with their food, such as woodpigeon (Columba palumbus), population models that simulate foraging behaviour explicitly can help predicting both exposure and population-level impact. Optimal foraging theory is often assumed to explain the individual-level decisions driving distributions of individuals in the field, but it may not adequately predict spatial and temporal characteristics of woodpigeon foraging because of the woodpigeons’ excellent memory, ability to fly long distances, and distinctive flocking behaviour. Here we present an individual-based model (IBM) of the woodpigeon. We used the model to predict distributions of foraging woodpigeons that use one of six alternative foraging strategies: optimal foraging, memory-based foraging and random foraging, each with or without flocking mechanisms. We used pattern-oriented modelling to determine which of the foraging strategies is best able to reproduce observed data patterns. Data used for model evaluation were gathered during a long-term woodpigeon study conducted between 1961 and 2004 and a radiotracking study conducted in 2003 and 2004, both in the UK, and are summarised here as three complex patterns: the distributions of foraging birds between vegetation types during the year, the number of fields visited daily by individuals, and the proportion of fields revisited by them on subsequent days. The model with a memory-based foraging strategy and a flocking mechanism was the only one to reproduce these three data patterns, and the optimal foraging model produced poor matches to all of them. The random foraging strategy reproduced two of the three patterns but was not able to guarantee population persistence. We conclude that with the memory-based foraging strategy including a flocking mechanism our model is realistic enough to estimate the potential exposure of woodpigeons to pesticides. We discuss how exposure can be linked to our model, and how the model could be used for risk assessment of pesticides, for example predicting exposure and effects in heterogeneous landscapes planted seasonally with a variety of crops, while accounting for differences in land use between landscapes.
Resumo:
The potential risk of agricultural pesticides to mammals typically depends on internal concentrations within individuals, and these are determined by the amount ingested and by absorption, distribution, metabolism, and excretion (ADME). Pesticide residues ingested depend, amongst other things, on individual spatial choices which determine how much and when feeding sites and areas of pesticide application overlap, and can be calculated using individual-based models (IBMs). Internal concentrations can be calculated using toxicokinetic (TK) models, which are quantitative representations of ADME processes. Here we provide a population model for the wood mouse (Apodemus sylvaticus) in which TK submodels were incorporated into an IBM representation of individuals making choices about where to feed. This allows us to estimate the contribution of individual spatial choice and TK processes to risk. We compared the risk predicted by four IBMs: (i) “AllExposed-NonTK”: assuming no spatial choice so all mice have 100% exposure, no TK, (ii) “AllExposed-TK”: identical to (i) except that the TK processes are included where individuals vary because they have different temporal patterns of ingestion in the IBM, (iii) “Spatial-NonTK”: individual spatial choice, no TK, and (iv) “Spatial-TK”: individual spatial choice and with TK. The TK parameters for hypothetical pesticides used in this study were selected such that a conventional risk assessment would fail. Exposures were standardised using risk quotients (RQ; exposure divided by LD50 or LC50). We found that for the exposed sub-population including either spatial choice or TK reduced the RQ by 37–85%, and for the total population the reduction was 37–94%. However spatial choice and TK together had little further effect in reducing RQ. The reasons for this are that when the proportion of time spent in treated crop (PT) approaches 1, TK processes dominate and spatial choice has very little effect, and conversely if PT is small spatial choice dominates and TK makes little contribution to exposure reduction. The latter situation means that a short time spent in the pesticide-treated field mimics exposure from a small gavage dose, but TK only makes a substantial difference when the dose was consumed over a longer period. We concluded that a combined TK-IBM is most likely to bring added value to the risk assessment process when the temporal pattern of feeding, time spent in exposed area and TK parameters are at an intermediate level; for instance wood mice in foliar spray scenarios spending more time in crop fields because of better plant cover.
Resumo:
One potential source of heterogeneity within autism spectrum conditions (ASC) is language development and ability. In 80 high-functioning male adults with ASC, we tested if variations in developmental and current structural language are associated with current neuroanatomy. Groups with and without language delay differed behaviorally in early social reciprocity, current language, but not current autistic features. Language delay was associated with larger total gray matter (GM) volume, smaller relative volume at bilateral insula, ventral basal ganglia, and right superior, middle, and polar temporal structures, and larger relative volume at pons and medulla oblongata in adulthood. Despite this heterogeneity, those with and without language delay showed significant commonality in morphometric features when contrasted with matched neurotypical individuals (n = 57). In ASC, better current language was associated with increased GM volume in bilateral temporal pole, superior temporal regions, dorsolateral fronto-parietal and cerebellar structures, and increased white matter volume in distributed frontal and insular regions. Furthermore, current language–neuroanatomy correlation patterns were similar across subgroups with or without language delay. High-functioning adult males with ASC show neuroanatomical variations associated with both developmental and current language characteristics. This underscores the importance of including both developmental and current language as specifiers for ASC, to help clarify heterogeneity.
Resumo:
BACKGROUND: Monitoring of fruit and vegetable (F&V) intake is fraught with difficulties. Available dietary assessment methods are associated with considerable error, and the use of biomarkers offers an attractive alternative. Few studies to date have examined the use of plasma biomarkers to monitor or predict the F&V intake of volunteers consuming a wide range of intakes from both habitual F&V and manipulated diets. OBJECTIVE: This study tested the hypothesis that an integrated biomarker calculated from a combination of plasma vitamin C, cholesterol-adjusted carotenoid concentration and Ferric Reducing Antioxidant Power (FRAP) had more power to predict F&V intake than each individual biomarker. METHODS: Data from a randomized controlled dietary intervention study [FLAVURS (Flavonoids University of Reading Study); n = 154] in which the test groups observed sequential increases of 2.3, 3.2, and 4.2 portions of F&Vs every 6 wk across an 18-wk period were used in this study. RESULTS: An integrated plasma biomarker was devised that included plasma vitamin C, total cholesterol-adjusted carotenoids, and FRAP values, which better correlated with F&V intake (r = 0.47, P < 0.001) than the individual biomarkers (r = 0.33, P < 0.01; r = 0.37, P < 0.001; and r = 0.14, respectively; P = 0.099). Inclusion of urinary potassium concentration did not significantly improve the correlation. The integrated plasma biomarker predicted F&V intake more accurately than did plasma total cholesterol-adjusted carotenoid concentration, with the difference being significant at visit 2 (P < 0.001) and with a tendency to be significant at visit 1 (P = 0.07). CONCLUSION: Either plasma total cholesterol-adjusted carotenoid concentration or the integrated biomarker could be used to distinguish between high- and moderate-F&V consumers. This trial was registered at www.controlled-trials.com as ISRCTN47748735.
Resumo:
More and more households are purchasing electric vehicles (EVs), and this will continue as we move towards a low carbon future. There are various projections as to the rate of EV uptake, but all predict an increase over the next ten years. Charging these EVs will produce one of the biggest loads on the low voltage network. To manage the network, we must not only take into account the number of EVs taken up, but where on the network they are charging, and at what time. To simulate the impact on the network from high, medium and low EV uptake (as outlined by the UK government), we present an agent-based model. We initialise the model to assign an EV to a household based on either random distribution or social influences - that is, a neighbour of an EV owner is more likely to also purchase an EV. Additionally, we examine the effect of peak behaviour on the network when charging is at day-time, night-time, or a mix of both. The model is implemented on a neighbourhood in south-east England using smart meter data (half hourly electricity readings) and real life charging patterns from an EV trial. Our results indicate that social influence can increase the peak demand on a local level (street or feeder), meaning that medium EV uptake can create higher peak demand than currently expected.
Resumo:
This article proposes an auction model where two firms compete for obtaining the license for a public project and an auctioneer acting as a public official representing the political power, decides the winner of the contest. Players as firms face a social dilemma in the sense that the higher is the bribe offered, the higher would be the willingness of a pure monetary maximizer public official to give her the license. However, it implies inducing a cost of reducing all players’ payoffs as far as our model includes an endogenous externality, which depends on bribe. All players’ payoffs decrease with the bribe (and increase with higher quality). We find that the presence of bribe aversion in either the officials’ or the firms’ utility function shifts equilibrium towards more pro-social behavior. When the quality and bribe-bid strategy space is discrete, multiple equilibria emerge including more pro-social bids than would be predicted under a continuous strategy space.
Resumo:
This paper investigates the feasibility of using approximate Bayesian computation (ABC) to calibrate and evaluate complex individual-based models (IBMs). As ABC evolves, various versions are emerging, but here we only explore the most accessible version, rejection-ABC. Rejection-ABC involves running models a large number of times, with parameters drawn randomly from their prior distributions, and then retaining the simulations closest to the observations. Although well-established in some fields, whether ABC will work with ecological IBMs is still uncertain. Rejection-ABC was applied to an existing 14-parameter earthworm energy budget IBM for which the available data consist of body mass growth and cocoon production in four experiments. ABC was able to narrow the posterior distributions of seven parameters, estimating credible intervals for each. ABC’s accepted values produced slightly better fits than literature values do. The accuracy of the analysis was assessed using cross-validation and coverage, currently the best available tests. Of the seven unnarrowed parameters, ABC revealed that three were correlated with other parameters, while the remaining four were found to be not estimable given the data available. It is often desirable to compare models to see whether all component modules are necessary. Here we used ABC model selection to compare the full model with a simplified version which removed the earthworm’s movement and much of the energy budget. We are able to show that inclusion of the energy budget is necessary for a good fit to the data. We show how our methodology can inform future modelling cycles, and briefly discuss how more advanced versions of ABC may be applicable to IBMs. We conclude that ABC has the potential to represent uncertainty in model structure, parameters and predictions, and to embed the often complex process of optimizing an IBM’s structure and parameters within an established statistical framework, thereby making the process more transparent and objective.
Resumo:
Even though Africa has constantly emphasized the need to reduce deficit financing through mobilization of more internal revenues, this has not been achieved. Perhaps encouraging voluntary tax compliance can improve internal revenue mobilization. This study explores the relationship between ethical orientation and tax compliance and finds that ethical persons are generally more tax compliant than unethical persons but are more influenced by considerations of tax rate and withholding positions compared to unethical persons. The findings of this study differ from Reckers et al. in a number of ways and contribute to the literature by providing a possible explanation of the cause(s) of tax non- compliance.
Resumo:
Increasing prominence of the psychological ownership (PO) construct in management studies raises questions about how PO manifests at the level of the individual. In this article, we unpack the mechanism by which individuals use PO to express aspects of their identity and explore how PO manifestations can display congruence as well as incongruence between layers of self. As a conceptual foundation, we develop a dynamic model of individual identity that differentiates between four layers of self, namely, the “core self,” “learned self,” “lived self,” and “perceived self.” We then bring identity and PO literatures together to suggest a framework of PO manifestation and expression viewed through the lens of the four presented layers of self. In exploring our framework, we develop a number of propositions that lay the foundation for future empirical and conceptual work and discuss implications for theory and practice.
Resumo:
Individual-based models (IBMs) can simulate the actions of individual animals as they interact with one another and the landscape in which they live. When used in spatially-explicit landscapes IBMs can show how populations change over time in response to management actions. For instance, IBMs are being used to design strategies of conservation and of the exploitation of fisheries, and for assessing the effects on populations of major construction projects and of novel agricultural chemicals. In such real world contexts, it becomes especially important to build IBMs in a principled fashion, and to approach calibration and evaluation systematically. We argue that insights from physiological and behavioural ecology offer a recipe for building realistic models, and that Approximate Bayesian Computation (ABC) is a promising technique for the calibration and evaluation of IBMs. IBMs are constructed primarily from knowledge about individuals. In ecological applications the relevant knowledge is found in physiological and behavioural ecology, and we approach these from an evolutionary perspective by taking into account how physiological and behavioural processes contribute to life histories, and how those life histories evolve. Evolutionary life history theory shows that, other things being equal, organisms should grow to sexual maturity as fast as possible, and then reproduce as fast as possible, while minimising per capita death rate. Physiological and behavioural ecology are largely built on these principles together with the laws of conservation of matter and energy. To complete construction of an IBM information is also needed on the effects of competitors, conspecifics and food scarcity; the maximum rates of ingestion, growth and reproduction, and life-history parameters. Using this knowledge about physiological and behavioural processes provides a principled way to build IBMs, but model parameters vary between species and are often difficult to measure. A common solution is to manually compare model outputs with observations from real landscapes and so to obtain parameters which produce acceptable fits of model to data. However, this procedure can be convoluted and lead to over-calibrated and thus inflexible models. Many formal statistical techniques are unsuitable for use with IBMs, but we argue that ABC offers a potential way forward. It can be used to calibrate and compare complex stochastic models and to assess the uncertainty in their predictions. We describe methods used to implement ABC in an accessible way and illustrate them with examples and discussion of recent studies. Although much progress has been made, theoretical issues remain, and some of these are outlined and discussed.