969 resultados para in situ studies
Resumo:
In this paper, new solutions to the problem of making measurements, of carbonation and chloride ingress, in particular, in concrete structures are considered. The approach has focused on the design, development, and use of fiber-optic sensors (FOSs), recognizing the need in that conventional devices are often either inaccurate, expensive, or unsuitable for encapsulation in the material. The sensors have been designed to monitor, in situ and nondestructively, relevant physical, and chemical changes in cementitious materials. Three different types of FOS were constructed, tested, and evaluated specifically for this application, these being a temperature sensor (based on the fluorescence decay) and pH and chloride sensors, based on sol-gel (solidified gel) technology with appropriate impregnated indicators. The sensors were all designed to be inserted into the structures and evaluated under the harshest conditions, i.e., being mounted when the mortar is poured and thus tested in situ, with the temperature and pH sensors successfully embedded in mortar. The outcomes of these tests have shown that both the temperature sensor and the pH sensor were able to function correctly for the duration of the work - for over 18 months after placement. The laboratory tests on the chloride sensor showed it was able to make measurements but was not reversible, limiting its potential utility for in situ environments. Research is ongoing to refine the sensor performance and extend the testing.
Novel methods for in situ testing and monitoring of the durability of reinforced concrete structures
Resumo:
Special issue on Sensor Systems for Structural Health Monitoring Abstract—This study addresses the direct calibration of optical fiber strain sensors used for structural monitoring and is carried out in situ. The behavior of fiber-Bragg-grating-based sensor systems when attached to metal bars, in a manner representative of their use as reinforcement bars in structures, was examined and their response calibrated. To ensure the validity of the measurements,this was done using an extensometer with a further calibrationagainst the response of electrical resistance strain gauges, often conventionally used, for comparison. The results show a repeatable calibration generating a suitable geometric factor of extension to strain for these sensors, to enable accurate strain data to be obtained when the fiber-optic sensor system is in use in structural monitoring applications.
Resumo:
The radiation efficiency and resonance frequency of five compact antennas worn by nine individual test subjects was measured at 2.45 GHz in a reverberation chamber. The results show that, despite significant differences in body mass, wearable antenna radiation efficiency had a standard deviation less than 0.6 dB and the resonance frequency shift was less than 1% between test subjects. Variability in the radiation efficiency and resonance frequency shift between antennas was largely dependant on body tissue coupling which is related to both antenna geometry and radiation characteristics. The reverberation chamber measurements were validated using a synthetic tissue phantom and compared with results obtained in a spherical near field chamber and finite-difference time-domain (FDTD) simulation.
Resumo:
Sampling and specimen preparation produce changes in mean effective stresses and pore water pressures, even with ‘perfect sampling’. The paper takes an existing simplified three-parameter cross-anisotropic elastic model and uses it to model these changes. The required ratio of cross-anisotropic parameters J/3G* can be obtained from standard CIU triaxial tests. If measurements are also made of suctions in unloaded specimens in the laboratory, then a combination of J/3G*, the measured suction, and the effective overburden pressure permits an estimation of the horizontal effective pressure and the K 0 ‘at rest’ coefficient. This can be helpful in numerical modelling that needs to start from in situ conditions, and in planning pressure levels for reconsolidation of clay specimens in the laboratory. Tests were done on Belfast Upper Boulder Clay from a depth of 28 m. Values of horizontal in situ effective stress estimated from these measurements compare favorably with conventional estimates of the ‘at rest’ coefficient K 0 and the overconsolidation ratio. Estimates of horizontal stress in London Clay were made using published data and the results compared with actual measurements. Again reasonable agreement was obtained.
Resumo:
Chromogenic in situ hybridisation (CISH) has become an attractive alternative to fluorescence in situ hybridisation (FISH) due to its permanent stain which is more familiar to pathologists and because it can be viewed using light microscopy, The aim of the present study is to examine reproducibility in the assessment of abnormal chromosome number by CISH in comparison to FISH. Using three prostate cell lines - PNTIA (derived from normal epithelium), LNCAP and DU145 (derived from prostatic carcinoma), chromosomes 7 and 8 were counted in 40 nuclei in FISH preparations (x100 oil immersion) and 100 nuclei in CISH preparations (x40) by two independent observers. The CISH slides were examined using standard fight microscopy and virtual microscopy. Reproducibitity was examined using paired Student's t-test (P