987 resultados para immunohistochemical staining technique
Resumo:
Background: This paper aimed to use the Delphi technique to develop a consensus framework for a multinational, workplace walking intervention. Methods: Ideas were gathered and ranked from eight recognized and emerging experts in the fields of physical activity and health, from universities in Australia, Canada, England, the Netherlands, Northern Ireland, and Spain. Members of the panel were asked to consider the key characteristics of a successful campus walking intervention. Consensus was reached by an inductive, content analytic approach, conducted through an anonymous, three-round, e-mail process. Results: The resulting framework consisted of three interlinking themes defined as “design, implementation, and evaluation.” Top-ranked subitems in these themes included the need to generate research capacity (design), to respond to group needs through different walking approaches (implementation), and to undertake physical activity assessment (evaluation). Themes were set within an underpinning domain, referred to as the “institution” and sites are currently engaging with subitems in this domain, to provide sustainable interventions that reflect the practicalities of local contexts and needs. Conclusions: Findings provide a unique framework for designing, implementing, and evaluating walking projects in universities and highlight the value of adopting the Delphi technique for planning international, multisite health initiatives.
Resumo:
Increasing evidence indicates that astrocytes, the most abundant glial cell type in the brain, respond to an elevation in cytoplasmic calcium concentration ([Ca(2+)]i) by releasing chemical transmitters (also called gliotransmitters) via regulated exocytosis of heterogeneous classes of organelles. By this process, astrocytes exert modulatory influences on neighboring cells and are thought to participate in the control of synaptic circuits and cerebral blood flow. Studying the properties of exocytosis in astrocytes is a challenge, because the cell biological basis of this process is incompletely defined. Astrocytic exocytosis involves multiple populations of secretory vesicles, including synaptic-like microvesicles (SLMVs), dense-core granules (DCGs), and lysosomes. Here we summarize the available information for identifying individual populations of secretory organelles in astrocytes, including DCGs, SLMVs, and lysosomes, and present experimental procedures for specifically staining such populations.
Resumo:
Using a sensitive immunohistochemical technique, the localization of neuropeptide Y (NPY) Y1-receptor (Y1R)-like immunoreactivity (LI) was studied in various peripheral tissues of rat. Wild-type (WT) and Y1R-knockout (KO) mice were also analyzed. Y1R-LI was found in small arteries and arterioles in many tissues, with particularly high levels in the thyroid and parathyroid glands. In the thyroid gland, Y1R-LI was seen in blood vessel walls lacking alpha-smooth muscle actin, i.e., perhaps in endothelial cells of capillaries. Larger arteries lacked detectable Y1R-LI. A distinct Y1R-immunoreactive (IR) reticulum was seen in the WT mouse spleen, but not in Y1R-KO mouse or rat. In the gastrointestinal tract, Y1R-positive neurons were observed in the myenteric plexus, and a few enteroendocrine cells were Y1R-IR. Some cells in islets of Langerhans in the pancreas were Y1R-positive, and double immunostaining showed coexistence with somatostatin in D-cells. In the urogenital tract, Y1R-LI was observed in the collecting tubule cells of the renal papillae and in some epithelial cells of the seminal vesicle. Some chromaffin cells of adrenal medulla were positive for Y1R. The problem of the specificity of the Y1R-LI is evaluated using adsorption tests as well as comparisons among rat, WT mouse, and mouse with deleted Y1R. Our findings support many earlier studies based on other methodologies, showing that Y1Rs on smooth muscle cells of blood vessels mediate NPY-induced vasoconstriction in various organs. In addition, Y1Rs in other cells in parenchymal tissues of several organs suggest nonvascular effects of NPY via the Y1R.
Resumo:
Introduction: Roux-en-Y gastric bypass (RYGBP) is one of the commonest procedure for morbid obesity. It is associated with effective long-term weight loss, but can lead to significant complications, especially at the gastrojejunostomy (GJS) Patients and Methods: All the patients undergoing laparoscopic RYGBP at one of our two institutions were included in this study, in which we compared two different techniques for the construction of the GJS and their effects on the incidence of complications. In group A, anatomosis was performed on the posterior aspect of the gastric pouch. In group B it was performed across the staple line used to form the gastric pouch. A 21-mm circular stapler was used in all patients. Results: A total of 1128 patients were included between June 1999 and September 2009, 639 in group A and 488 in group B. Sixty patients developed a total of 65 complications at the GJS, with 14 (1,2 %) leaks, 42 (3,7 %) stricture, and 9 (0,8 %) marginal ulcers. Leaks (0,2 versus 2 %, p=0,005) and strictures (0,8 versus 5,9%, p<0,0001) were significantly fewer in group B than in group A. Conclusions: Improved surgical technique, with the GJS across the staple line used to form the gastric pouch, significantly reduces the rate of anastomotic complications at the GJS. A circular 21-mm stapler can be used with a low complication rate, and especially a low stricture rate. Additional methods to limit complications at the GJS are probably not routinely warranted.
Resumo:
Fluorescence resonance energy transfer (FRET) allows the user to investigate interactions between fluorescent partners. One crucial issue when calculating sensitized emission FRET is the correction for spectral bleed-throughs (SBTs), which requires to calculate the ratios between the intensities in the FRET and in the donor or acceptor settings, when only the donor or acceptor are present. Theoretically, SBT ratios should be constant. However, experimentally, these ratios can vary as a function of fluorophore intensity, and assuming constant values may hinder precise FRET calculation. One possible cause for such a variation is the use of a microscope set-up with different photomultipliers for the donor and FRET channels, a set-up allowing higher speed acquisitions on very dynamic fluorescent molecules in living cells. Herein, we show that the bias introduced by the differential response of the two PMTs can be circumvented by a simple modeling of the SBT ratios as a function of fluorophore intensity. Another important issue when performing FRET is the localization of FRET within the cell or a population of cells. We hence developed a freely available ImageJ plug-in, called PixFRET, that allows a simple and rapid determination of SBT parameters and the display of normalized FRET images. The usefulness of this modeling and of the plug-in are exemplified by the study of FRET in a system where two interacting nuclear receptors labeled with ECFP and EYFP are coexpressed in living cells.
Resumo:
The aim of this study was to culture human fetal bone cells (dedicated cell banks of fetal bone derived from 14 week gestation femurs) within both hyaluronic acid gel and collagen foam, to compare the biocompatibility of both matrices as potential delivery systems for bone engineering and particularly for oral application. Fetal bone cell banks were prepared from one organ donation and cells were cultured for up to 4 weeks within hyaluronic acid (Mesolis(®)) and collagen foams (TissueFleece(®)). Cell survival and differentiation were assessed by cell proliferation assays and histology of frozen sections stained with Giemsa, von Kossa and ALP at 1, 2 and 4 weeks of culture. Within both materials, fetal bone cells could proliferate in three-dimensional structure at ∼70% capacity compared to monolayer culture. In addition, these cells were positive for ALP and von Kossa staining, indicating cellular differentiation and matrix production. Collagen foam provides a better structure for fetal bone cell delivery if cavity filling is necessary and hydrogels would permit an injectable technique for difficult to treat areas. In all, there was high biocompatibility, cellular differentiation and matrix deposition seen in both matrices by fetal bone cells, allowing for easy cell delivery for bone stimulation in vivo. Copyright © 2011 John Wiley & Sons, Ltd.
Resumo:
PURPOSE: To evaluate the potential delay of the retinal degeneration in rd1/rd1 mice using recombinant human glial cell line-derived neurotrophic factor (rhGDNF) encapsulated in poly(D,L-lactide-co-glycolide) (PLGA) microspheres. METHODS: rhGDNF-loaded PLGA microspheres were prepared using a water in oil in water (w/o/w) emulsion solvent extraction-evaporation process. In vitro, the rhGDNF release profile was assessed using radiolabeled factor. In vivo, rhGDNF microspheres, blank microspheres, or microspheres loaded with inactivated rhGDNF were injected into the vitreous of rd1/rd1 mice at postnatal day 11 (PN11). The extent of retinal degeneration was examined at PN28 using rhodopsin immunohistochemistry on whole flat-mount retinas, outer nuclear layer (ONL) cell counting on histology sections, and electroretinogram tracings. Immunohistochemical reactions for glial fibrillary acidic protein (GFAP), F4/80, and rhodopsin were performed on cryosections. RESULTS: Significant delay of rod photoreceptors degeneration was observed in mice receiving the rhGDNF-loaded microspheres compared to either untreated mice or to mice receiving blank or inactivated rhGDNF microspheres. The degeneration delay in the eyes receiving the rhGDNF microspheres was illustrated by the increased rhodopsin positive signals, the preservation of significantly higher number of cell nuclei within the ONL, and significant b-wave increase. A reduction of the subretinal glial proliferation was also observed in these treated eyes. No significant intraocular inflammatory reaction was observed after the intravitreous injection of the various microspheres. CONCLUSIONS: A single intravitreous injection of rhGDNF-loaded microspheres slows the retinal degeneration processes in rd1/rd1 mice. The use of injectable, biodegradable polymeric systems in the vitreous enables the efficient delivery of therapeutic proteins for the treatment of retinal diseases.
Resumo:
Ex vivo ELISPOT and multimer staining are well-established tests for the assessment of antigen-specific T cells. Many laboratories are now using a period of in vitro stimulation (IVS) to enhance detection. Here, we report the findings of a multi-centre panel organised by the Association for Cancer Immunotherapy Immunoguiding Program to investigate the impact of IVS protocols on the detection of antigen-specific T cells of varying ex vivo frequency. Five centres performed ELISPOT and multimer staining on centrally prepared PBMCs from 3 donors, both ex vivo and following IVS. A harmonised IVS protocol was designed based on the best-performing protocol(s), which was then evaluated in a second phase on 2 donors by 6 centres. All centres were able to reliably detect antigen-specific T cells of high/intermediate frequency both ex vivo (Phase I) and post-IVS (Phase I and II). The highest frequencies of antigen-specific T cells ex vivo were mirrored in the frequencies following IVS and in the detection rates. However, antigen-specific T cells of a low/undetectable frequency ex vivo were not reproducibly detected post-IVS. Harmonisation of the IVS protocol reduced the inter-laboratory variation observed for ELISPOT and multimer analyses by approximately 20 %. We further demonstrate that results from ELISPOT and multimer staining correlated after (P < 0.0001 and R (2) = 0.5113), but not before IVS. In summary, IVS was shown to be a reproducible method that benefitted from method harmonisation.
Resumo:
OBJECTIVES: To assess inter-observer variability of renal blood oxygenation level-dependent MRI (BOLD-MRI) using a new method of analysis, called the concentric objects (CO) technique, in comparison with the classical ROI (region of interest)-based technique. METHODS: MR imaging (3T) was performed before and after furosemide in 10 chronic kidney disease (CKD) patients (mean eGFR 43±24ml/min/1.73m(2)) and 10 healthy volunteers (eGFR 101±28ml/min1.73m(2)), and R2* maps were determined on four coronal slices. In the CO-technique, R2* values were based on a semi-automatic procedure that divided each kidney in six equal layers, whereas in the ROI-technique, all circles (ROIs) were placed manually in the cortex and medulla. The mean R2*values as assessed by two independent investigators were compared. RESULTS: With the CO-technique, inter-observer variability was 0.7%-1.9% across all layers in non-CKD, versus 1.6%-3.8% in CKD. With the ROI-technique, median variability for cortical and medullary R2* values was 3.6 and 6.8% in non-CKD, versus 4.7 and 12.5% in CKD; similar results were observed after furosemide. CONCLUSION: The CO-technique offers a new, investigator-independent, highly reproducible alternative to the ROI-based technique to estimate renal tissue oxygenation in CKD.
Resumo:
The objective of this work was to improve the mass rearing technique of Euschistus heros in laboratory. Nymphs and adults were reared at densities 100, 200, 300 and 400 eggs per Petri dish (9 cm diameter), and at 50, 100, 150 and 200 couples per rearing cages (900 mL), respectively. Survival rate of immature stages and survivorship and reproduction of adults were determinated. Survivorship of nymph to adult was the highest (89%) at density 100 eggs per dish. Adult survivorship was independent of density, and 100 couples per cage were the best to improve quality of the produced progeny. In these conditions, fecundity was 160.8±9.28 eggs per female, and a total of 8,950±456 eggs per cage per month was produced. Two hundred couples per cage showed a negative effect on reproduction, which decreased to 65%. With this technique, a colony of 35 cages with 100 couples per cage yields about 313.3 thousands eggs per month, which is enough to supply the egg parasitoid Telenomus podisi to colonize about 35 ha of soybean field.
Resumo:
We report magnetic and magneto-optical measurements of two Mn12 single-molecule magnet derivatives isolated in organic glasses. Field-dependent magnetic circular dichroism (MCD) intensity curves (hysteresis cycles) are found to be essentially identical to superconducting quantum interference device magnetization results and provide experimental evidence for the potential of the optical technique for magnetic characterization. Optical observation of magnetic tunneling has been achieved by studying the decay of the MCD signal at weak applied magnetic field
Resumo:
[Décret. 1928-11-01]
Resumo:
Visual implant elastomer (VIE) has recently been employed to investigate different aspects of earthworm ecology. However, a number of fundamental questions relating to the detection and positioning of the tag, its persistence and potential effects on earthworms remain unknown. Seven earthworm species belonging to three ecological groupings, with different pigmentation and burrowing behaviour, were tagged using different coloured VIE. External inspection after two days, one week and 1, 10 and 27 months were followed by preservation, dissection and internal inspection. Tags could be seen in living specimens to 27 months, and dissection revealed that in most cases they were lodged in the coelomic cavity, held in place by septa. However, over longer time periods (more than two years), the chlorogogenous tissue tended to bind to the tags and made external observation increasingly difficult. Migration of the VIE material towards the posterior of the earthworm and potential loss of the tag were only observed on rare occasions, and a recovery rate in excess of 98% was recorded. By introducing a reasonable amount of VIE into segments, just after the clitellum, this technique can become a valuable tool in earthworm ecology and life history studies, particularly in short-medium term laboratory and field experiments.