853 resultados para height partition clustering
Bias, precision and heritability of self-reported and clinically measured height in Australian twins
Resumo:
Many studies of quantitative and disease traits in human genetics rely upon self-reported measures. Such measures are based on questionnaires or interviews and are often cheaper and more readily available than alternatives. However, the precision and potential bias cannot usually be assessed. Here we report a detailed quantitative genetic analysis of stature. We characterise the degree of measurement error by utilising a large sample of Australian twin pairs (857 MZ, 815 DZ) with both clinical and self-reported measures of height. Self-report height measurements are shown to be more variable than clinical measures. This has led to lowered estimates of heritability in many previous studies of stature. In our twin sample the heritability estimate for clinical height exceeded 90%. Repeated measures analysis shows that 2-3 times as many self-report measures are required to recover heritability estimates similar to those obtained from clinical measures. Bivariate genetic repeated measures analysis of self-report and clinical height measures showed an additive genetic correlation > 0.98. We show that the accuracy of self-report height is upwardly biased in older individuals and in individuals of short stature. By comparing clinical and self-report measures we also showed that there was a genetic component to females systematically reporting their height incorrectly; this phenomenon appeared to not be present in males. The results from the measurement error analysis were subsequently used to assess the effects of error on the power to detect linkage in a genome scan. Moderate reduction in error (through the use of accurate clinical or multiple self-report measures) increased the effective sample size by 22%; elimination of measurement error led to increases in effective sample size of 41%.
Resumo:
Computer display height and desk design to allow forearm support are two critical design features of workstations for information technology tasks. However there is currently no 3D description of head and neck posture with different computer display heights and no direct comparison to paper based information technology tasks. There is also inconsistent evidence on the effect of forearm support on posture and no evidence on whether these features interact. This study compared the 3D head, neck and upper limb postures of 18 male and 18 female young adults whilst working with different display and desk design conditions. There was no substantial interaction between display height and desk design. Lower display heights increased head and neck flexion with more spinal asymmetry when working with paper. The curved desk, designed to provide forearm support, increased scapula elevation/protraction and shoulder flexion/abduction.
Resumo:
Quality of life has been shown to be poor among people living with chronic hepatitis C However, it is not clear how this relates to the presence of symptoms and their severity. The aim of this study was to describe the typology of a broad array of symptoms that were attributed to hepatitis C virus (HCV) infection. Phase I used qualitative methods to identify symptoms. In Phase 2, 188 treatment-naive people living with HCV participated in a quantitative survey. The most prevalent symptom was physical tiredness (86%) followed by irritability (75%), depression (70%), mental tiredness (70%), and abdominal pain (68%). Temporal clustering of symptoms was reported in 62% of participants. Principal components analysis identified four symptom clusters: neuropsychiatric (mental tiredness, poor concentration, forgetfulness, depression, irritability, physical tiredness, and sleep problems); gastrointestinal (day sweats, nausea, food intolerance, night sweats, abdominal pain, poor appetite, and diarrhea); algesic (joint pain, muscle pain, and general body pain); and dysesthetic (noise sensitivity, light sensitivity, skin. problems, and headaches). These data demonstrate that symptoms are prevalent in treatment-naive people with HCV and support the hypothesis that symptom clustering occurs.
Normal fat and lean tissue mass in adults with cystic fibrosis compared with height matched controls
Resumo:
In this paper we present an efficient k-Means clustering algorithm for two dimensional data. The proposed algorithm re-organizes dataset into a form of nested binary tree*. Data items are compared at each node with only two nearest means with respect to each dimension and assigned to the one that has the closer mean. The main intuition of our research is as follows: We build the nested binary tree. Then we scan the data in raster order by in-order traversal of the tree. Lastly we compare data item at each node to the only two nearest means to assign the value to the intendant cluster. In this way we are able to save the computational cost significantly by reducing the number of comparisons with means and also by the least use to Euclidian distance formula. Our results showed that our method can perform clustering operation much faster than the classical ones. © Springer-Verlag Berlin Heidelberg 2005