998 resultados para heart output
Resumo:
BACKGROUND: There is an emerging knowledge base on the effectiveness of strategies to close the knowledge-practice gap. However, less is known about how attributes of an innovation and other contextual and situational factors facilitate and impede an innovation's adoption. The Healthy Heart Kit (HHK) is a risk management and patient education resource for the prevention of cardiovascular disease (CVD) and promotion of cardiovascular health. Although previous studies have demonstrated the HHK's content validity and practical utility, no published study has examined physicians' uptake of the HHK and factors that shape its adoption. OBJECTIVES: Conceptually informed by Rogers' Diffusion of Innovation theory, and Theory of Planned Behaviour, this study had two objectives: (1) to determine if specific attributes of the HHK as well as contextual and situational factors are associated with physicians' intention and actual usage of the HHK kit; and (2), to determine if any contextual and situational factors are associated with individual or environmental barriers that prevent the uptake of the HHK among those physicians who do not plan to use the kit. METHODS: A sample of 153 physicians who responded to an invitation letter sent to all family physicians in the province of Alberta, Canada were recruited for the study. Participating physicians were sent a HHK, and two months later a study questionnaire assessed primary factors on the physicians' clinical practice, attributes of the HHK (relative advantage, compatibility, complexity, trialability, observability), confidence and control using the HHK, barriers to use, and individual attributes. All measures were used in path analysis, employing a causal model based on Rogers' Diffusion of Innovations Theory and Theory of Planned Behaviour. RESULTS: 115 physicians (follow up rate of 75%) completed the questionnaire. Use of the HHK was associated with intention to use the HHK, relative advantage, and years of experience. Relative advantage and the observability of the HHK benefits were also significantly associated with physicians' intention to use the HHK. Physicians working in solo medical practices reported experiencing more individual and environmental barriers to using the HHK. CONCLUSION: The results of this study suggest that future information innovations must demonstrate an advantage over current resources and the research evidence supporting the innovation must be clearly visible. Findings also suggest that the innovation adoption process has a social element, and collegial interactions and discussions may facilitate that process. These results could be valuable for knowledge translation researchers and health promotion developers in future innovation adoption planning.
Resumo:
Cardiac-resident stem/progenitor cells have been identified based on expression of stem cell-associated antigens. However, no single surface marker allows to identify a definite cardiac stem/progenitor cell entity. Hence, functional stem cell markers have been extensively searched for. In homeostatic systems, stem cells divide infrequently and therefore retain DNA labels such as 5-bromo-2'-deoxyuridine, which are diluted with division. We used this method to analyze long-term label-retaining cells in the mouse heart after 14 days of 5-bromo-2'-deoxyuridine administration. Labeled cells were detected using immunohistochemical and flow-cytometric methods after varying chasing periods up to 12 months. Using mathematical models, the observed label dilution could consistently be described in the context of a 2-population model, whereby a population of rapidly dividing cells accounted for an accelerated early decline, and a population of slowly dividing cells accounted for decelerated dilution on longer time scales. Label-retaining cells were preferentially localized in the atria and apical region and stained negative for markers of the major cell lineages present in the heart. Most cells with long-term label-retention expressed stem cell antigen-1 (Sca-1). Sca-1(+)CD31(-) cells formed cell aggregates in culture, out of which lineage-negative (Lin(-))Sca-1(+)CD31(-) cells emerged, which could be cultured for many passages. These cells formed cardiospheres and showed differentiation potential into mesenchymal cell lineages. When cultured in cardiomyogenic differentiation medium, they expressed cardiac-specific genes. In conclusion, recognition of slow-cycling cells provides functional evidence of stem/progenitor cells in the heart. Lin(-)Sca-1(+)CD31(-) cardiac-derived progenitors have a potential for differentiation into cardiomyogenic and mesenchymal cell lineages.
Resumo:
NT-proBNP, a marker of cardiac failure, has been shown to be stable in post mortem samples. The aim of this study was to assess the accuracy of NT-proBNP to detect heart failure in the forensic setting. One hundred sixty-eight consecutive autopsies were included in the study. NT-proBNP blood concentrations were measured using a chemiluminescent immunoassay kit. Cardiac failure was assessed by three independent forensic experts using macro- and microscopic findings complemented by information about the circumstances of body discovery and the known medical story. Area under the receiving operator curve was of 65.4% (CI 95%, from 57.1 to 73.7). Using a standard cut-off value of >220 pg/mL for NT-proBNP blood concentration, heart failure was detected with a sensitivity of 50.7% and a specificity of 72.6%. NT-proBNP vitreous humor values were well correlated to the ones measured in blood (r (2) = 0.658). Our results showed that NT-proBNP can corroborate the pathological findings in cases of natural death related to heart failure, thus, keeping its diagnostic properties passing from the ante mortem to the post mortem setting. Therefore, biologically inactive polypeptides like NT-proBNP seem to be stable enough to be used in forensic medicine as markers of cardiac failure, taking into account the sensitivity and specificity of the test.
Resumo:
Recently, rapid and transient cardiac pacing was shown to induce preconditioning in animal models. Whether the electrical stimulation per se or the concomitant myocardial ischemia affords such a protection remains unknown. We tested the hypothesis that chronic pacing of a cardiac preparation maintained in a normoxic condition can induce protection. Hearts of 4-day-old chick embryos were electrically paced in ovo over a 12-h period using asynchronous and intermittent ventricular stimulation (5 min on-10 min off) at 110% of the intrinsic rate. Sham (n = 6) and paced hearts (n = 6) were then excised, mounted in vitro, and subjected successively to 30 min of normoxia (20% O(2)), 30 min of anoxia (0% O(2)), and 60 min of reoxygenation (20% O(2)). Electrocardiogram and atrial and ventricular contractions were simultaneously recorded throughout the experiment. Reoxygenation-induced chrono-, dromo-, and inotropic disturbances, incidence of arrhythmias, and changes in electromechanical delay (EMD) in atria and ventricle were systematically investigated in sham and paced hearts. Under normoxia, the isolated heart beat spontaneously and regularly, and all baseline functional parameters were similar in sham and paced groups (means +/- SD): heart rate (190 +/- 36 beats/min), P-R interval (104 +/- 25 ms), mechanical atrioventricular propagation (20 +/- 4 mm/s), ventricular shortening velocity (1.7 +/- 1 mm/s), atrial EMD (17 +/- 4 ms), and ventricular EMD (16 +/- 2 ms). Under anoxia, cardiac function progressively collapsed, and sinoatrial activity finally stopped after approximately 9 min in both groups. During reoxygenation, paced hearts showed 1) a lower incidence of arrhythmias than sham hearts, 2) an increased rate of recovery of ventricular contractility compared with sham hearts, and 3) a faster return of ventricular EMD to basal value than sham hearts. However, recovery of heart rate, atrioventricular conduction, and atrial EMD was not improved by pacing. Activity of all hearts was fully restored at the end of reoxygenation. These findings suggest that chronic electrical stimulation of the ventricle at a near-physiological rate selectively alters some cellular functions within the heart and constitutes a nonischemic means to increase myocardial tolerance to a subsequent hypoxia-reoxygenation.
Resumo:
Some patients infected with human immunodeficiency virus (HIV) who are experiencing antiretroviral treatment failure have persistent improvement in CD4+ T cell counts despite high plasma viremia. To explore the mechanisms responsible for this phenomenon, 2 parameters influencing the dynamics of CD4+ T cells were evaluated: death of mature CD4+ T cells and replenishment of the CD4+ T cell pool by the thymus. The improvement in CD4+ T cells observed in patients with treatment failure was not correlated with spontaneous, Fas ligand-induced, or activation-induced T cell death. In contrast, a significant correlation between the improvement in CD4+ T cell counts and thymic output, as assessed by measurement of T cell receptor excision circles, was observed. These observations suggest that increased thymic output contributes to the dissociation between CD4+ T cell counts and viremia in patients failing antiretroviral therapy and support a model in which drug-resistant HIV strains may have reduced replication rates and pathogenicity in the thymus.
Resumo:
De nombreuses études cliniques ont révélé une corrélation étroite entre un régime alimentaire riche en sel et le développement d'une hypertrophie ventriculaire gauche. Cette association a été classiquement attribuée aux effets hypertensifs à long terme d'une alimentation riche en sel. Toutefois, les études épidémiologiques ont également démontré que l'hypertrophie ventriculaire gauche peut survenir indépendamment de changements de pression artérielle.¦L'ingestion de sel n'étant pas distribuée de manière homogène durant la journée mais ayant lieu principalement durant les repas, nous émettons l'hypothèse que chaque repas riche en sel induit une augmentation aiguë de la pression artérielle, des pressions de remplissage cardiaque, du volume d'éjection systolique et du débit cardiaque. L'augmentation résultante du travail cardiaque pourrait ainsi à la longue entraîner une hypertrophie cardiaque.¦Pour tester si un repas riche en sel conduit à des modifications hémodynamiques favorisant l'hypertrophie cardiaque, nous avons comparé chez la même personne jeune et en bonne santé la réponse hémodynamique à un repas modérément salé (45 mmol) à celle d'un repas riche en sel (165 mmol de sodium). Les repas ont été pris de manière randomisée à 7 jours d'intervalle. Divers paramètres hémodynamiques ont été mesurés en continu avant et jusqu'à 140 minutes après chaque repas. Nos résultats montrent que les augmentations post-prandiales du volume d'éjection systolique et du travail cardiaque ont été plus prononcées après un repas à haute teneur en sel par rapport à un repas modérément salé.¦Nous spéculons que des apports chroniques en sel induisent des charges hémodynamiques répétées. Etant donné que la concentration plasmatique de sodium, qui est augmentée après un repas salé, est également capable de stimuler la croissance des myocytes cardiaques, il est possible que la combinaison sur des mois ou des années de pics hypernatrémiques post-prandiaux et de charges cardiaques soit responsable de l'hypertrophie cardiaque souvent observée avec une alimentation riche en sel.¦-¦Many clinical studies have shown a close correlation between a chronic high salt diet and the development of left ventricular hypertrophy. This association has been classically attributed to the long-term hypertensive effects of a high salt diet. However, epidemiological studies have also shown that left ventricular hypertrophy may occur independently of changes in arterial pressure.¦Since salt ingestion during a high salt diet is not distributed evenly over a 24-hr period, but occurs essentially during meal periods, we speculate that each acute salt load could lead to greater acute increases in blood pressure, heart filling pressure, stroke volume and cardiac output, putting an additional work load on the heart, promoting in the long run cardiac hypertrophy.¦To test whether a high salt meal leads to hemodynamic changes that may favor cardiac hypertrophy, we compared in the same healthy young individual the response to a moderately salted meal (45 mmol) and to a high-salt meal (165 mmol sodium), given in a random order on separate days, on various cardiovascular parameters that were continuously monitored before and up to 140 minutes after the meal. Our results show that the post-prandial increases in stroke volume, and cardiac work were more pronounced after a high-salt meal than after a low-salt meal.¦We speculate that repetitive salt loads associated with a high salt diet may lead to repetitive hemodynamic loads. Since plasma sodium concentration, which is increased after a salty meal, is also capable to stimulate myocyte growth, it is possible that the combination of post-prandial hypernatremic peaks and of cardiac loads may be responsible, when repeated many times over period of months, of the cardiac hypertrophy often seen with a high salt diet.
Resumo:
Introduction: Recently, mesenchymal stem cells (MSC) of perivascular origin have been identified in several organs not including the heart. Using a novel cell isolation protocol, we have isolated cells sharing common characteristics from mouse hearts and pancreas. The aim of the present study was to characterize these cells in vitro.Methods: Cells were isolated from neonatal and adult mouse hearts and pancreas and cultured for more than 6 months. Surface marker expression was analyzed by flow cytometry and immunocytochemistry. Cell differentiation was tested using multiple differentiation media. Insulin production by pancreas-derived cells was tested by dithizone staining.Results: Cells showing a similar, distinctive morphology were obtained from the heart and pancreas after 4-8 weeks of culture. Cells from the two organs also showed a very similar immunophenotype, characterized by expression of c-kit (stem cell factor receptor), CD44, the common leukocyte marker CD45, and the monocytic markers CD11b and CD14. A significant proportion of cardiac and pancreatic cells expressed NG2, a marker for pericytes and other vascular cells. A significant proportion of cardiac, but not of pancreatic cells expressed stem cell antigen-1 (Sca-1). However, cells did not express T, B or dendritic cell markers. Cells of both cardiac and pancreatic origin spontaneously formed "spheres" (spherical cell aggregates similar to "neurospheres" formed by neural stem cells) in vitro. Cardiosphere formation was enhanced by TNF-alpha. Several cardiospheres (but no "pancreatospheres") derived from neonatal (but not adult) cells showed spontaneous rhythmic contractions, thus demonstrating cardiac differentiation (this was confirmed by immunostaining for alpha-sarcomeric actinin). Beating activity was enhanced by low serum conditions. Cells from both organs formed adipocytes, osteocytes and osteocytes under appropriate conditions, the typical differentiation pattern of MSCs. Pancreas-derived cells also formed dithizonepositive insulin-producing cells.Conclusions: We have defined cardiac and pancreatic cell populations that share a common morphology, growth characteristics, and a unique immunophenotype. Expression of perivascular and monocytic markers, along with stem/priogenitor cell markers by these cells suggests a relationship with pericytes-mesoangioblasts and so-called multipotent monocytes. Cells show MSC-typical growth and differentiation patterns, together with tissue-specific differentiation potential: cardiomyocytes for cardiac-derived cells and insulinproducing cells for pancreas-derived cells.
Resumo:
PURPOSE: To evaluate the effect of a real-time adaptive trigger delay on image quality to correct for heart rate variability in 3D whole-heart coronary MR angiography (MRA). MATERIALS AND METHODS: Twelve healthy adults underwent 3D whole-heart coronary MRA with and without the use of an adaptive trigger delay. The moment of minimal coronary artery motion was visually determined on a high temporal resolution MRI. Throughout the scan performed without adaptive trigger delay, trigger delay was kept constant, whereas during the scan performed with adaptive trigger delay, trigger delay was continuously updated after each RR-interval using physiological modeling. Signal-to-noise, contrast-to-noise, vessel length, vessel sharpness, and subjective image quality were compared in a blinded manner. RESULTS: Vessel sharpness improved significantly for the middle segment of the right coronary artery (RCA) with the use of the adaptive trigger delay (52.3 +/- 7.1% versus 48.9 +/- 7.9%, P = 0.026). Subjective image quality was significantly better in the middle segments of the RCA and left anterior descending artery (LAD) when the scan was performed with adaptive trigger delay compared to constant trigger delay. CONCLUSION: Our results demonstrate that the use of an adaptive trigger delay to correct for heart rate variability improves image quality mainly in the middle segments of the RCA and LAD.
Resumo:
Background- Cardiac hypertrophy involves growth responses to a variety of stimuli triggered by increased workload. It is an independent risk factor for heart failure and sudden death. Mammalian target of rapamycin (mTOR) plays a key role in cellular growth responses by integrating growth factor and energy status signals. It is found in 2 structurally and functionally distinct multiprotein complexes called mTOR complex (mTORC) 1 and mTORC2. The role of each of these branches of mTOR signaling in the adult heart is currently unknown. Methods and Results- We generated mice with deficient myocardial mTORC1 activity by targeted ablation of raptor, which encodes an essential component of mTORC1, during adulthood. At 3 weeks after the deletion, atrial and brain natriuretic peptides and β-myosin heavy chain were strongly induced, multiple genes involved in the regulation of energy metabolism were altered, but cardiac function was normal. Function deteriorated rapidly afterward, resulting in dilated cardiomyopathy and high mortality within 6 weeks. Aortic banding-induced pathological overload resulted in severe dilated cardiomyopathy already at 1 week without a prior phase of adaptive hypertrophy. The mechanism involved a lack of adaptive cardiomyocyte growth via blunted protein synthesis capacity, as supported by reduced phosphorylation of ribosomal S6 kinase 1 and 4E-binding protein 1. In addition, reduced mitochondrial content, a shift in metabolic substrate use, and increased apoptosis and autophagy were observed. Conclusions- Our results demonstrate an essential function for mTORC1 in the heart under physiological and pathological conditions and are relevant for the understanding of disease states in which the insulin/insulin-like growth factor signaling axis is affected such as diabetes mellitus and heart failure or after cancer therapy.
Resumo:
BACKGROUND: Intrathecal analgesia and avoidance of perioperative fluid overload are key items within enhanced recovery pathways. Potential side effects include hypotension and renal dysfunction. STUDY DESIGN: From January 2010 until May 2010, all patients undergoing colorectal surgery within enhanced recovery pathways were included in this retrospective cohort study and were analyzed by intrathecal analgesia (IT) vs none (noIT). Primary outcomes measures were systolic and diastolic blood pressure, mean arterial pressure, and heart rate for 48 hours after surgery. Renal function was assessed by urine output and creatinine values. RESULTS: One hundred and sixty-three consecutive colorectal patients (127 IT and 36 noIT) were included in the analysis. Both patient groups showed low blood pressure values within the first 4 to 12 hours and a steady increase thereafter before return to baseline values after about 24 hours. Systolic and diastolic blood pressure and mean arterial pressure were significantly lower until 16 hours after surgery in patients having IT compared with the noIT group. Low urine output (<0.5 mL/kg/h) was reported in 11% vs 29% (IT vs noIT; p = 0.010) intraoperatively, 20% vs 11% (p = 0.387), 33% vs 22% (p = 0.304), and 31% vs 21% (p = 0.478) for postanesthesia care unit and postoperative days 1 and 2, respectively. Only 3 of 127 (2.4%) IT and 1 of 36 (2.8%) noIT patients had a transitory creatinine increase >50%; no patients required dialysis. CONCLUSIONS: Postoperative hypotension affects approximately 10% of patients within an enhanced recovery pathway and is slightly more pronounced in patients with IT. Hemodynamic depression persists for <20 hours after surgery; it has no measurable negative impact and therefore cannot justify detrimental postoperative fluid overload.
Resumo:
RATIONALE: The myeloid differentiation factor (MyD)88/interleukin (IL)-1 axis activates self-antigen-presenting cells and promotes autoreactive CD4(+) T-cell expansion in experimental autoimmune myocarditis, a mouse model of inflammatory heart disease. OBJECTIVE: The aim of this study was to determine the role of MyD88 and IL-1 in the progression of acute myocarditis to an end-stage heart failure. METHODS AND RESULTS: Using alpha-myosin heavy chain peptide (MyHC-alpha)-loaded, activated dendritic cells, we induced myocarditis in wild-type and MyD88(-/-) mice with similar distributions of heart-infiltrating cell subsets and comparable CD4(+) T-cell responses. Injection of complete Freund's adjuvant (CFA) or MyHC-alpha/CFA into diseased mice promoted cardiac fibrosis, induced ventricular dilation, and impaired heart function in wild-type but not in MyD88(-/-) mice. Experiments with chimeric mice confirmed the bone marrow origin of the fibroblasts replacing inflammatory infiltrates and showed that MyD88 and IL-1 receptor type I signaling on bone marrow-derived cells was critical for development of cardiac fibrosis during progression to heart failure. CONCLUSIONS: Our findings indicate a critical role of MyD88/IL-1 signaling in the bone marrow compartment in postinflammatory cardiac fibrosis and heart failure and point to novel therapeutic strategies against inflammatory cardiomyopathy.
Resumo:
There is much evidence for a causal relationship between salt intake and blood pressure (BP). The current salt intake in many countries is between 9 and 12 g/day. A reduction in salt intake to the recommended level of 5-6 g/day lowers BP in both hypertensive and normotensive individuals. A further reduction to 3-4 g/day has a much greater effect. Prospective studies and outcome trials have demonstrated that a lower salt intake is associated with a decreased risk of cardiovascular disease. Increasing evidence also suggests that a high salt intake is directly related to left ventricular hypertrophy (LVH) independent of BP. Both raised BP and LVH are important risk factors for heart failure. It is therefore possible that a lower salt intake could prevent the development of heart failure. In patients who already have heart failure, a high salt intake aggravates the retention of salt and water, thereby exacerbating heart failure symptoms and progression of the disease. A lower salt intake plays an important role in the management of heart failure. Despite this, currently there is no clear evidence on how far salt intake should be reduced in heart failure. Our personal view is that these patients should reduce their salt intake to <5 g/day, i.e. the maximum intake recommended by the World Health Organisation for all adults. If salt intake is successfully reduced, there may well be a need for a reduction in diuretic dosage.