829 resultados para habitat destruction
Resumo:
Adult individuals of the island pitviper Bothrops insularis have a diet based on birds. We analysed bird species recorded in the gut of this snake and found that it relies on two out of 41 bird species recorded on the island. When present, these two prey species were among the most abundant passerine birds on the island. A few other migrant birds were very occasionally recorded as prey. A resident bird species (Troglodytes musculus) is the most abundant passerine on the island, but seems able to avoid predation by the viper. Bothrops insularis is most commonly found on the ground. However, during the abundance peak of the tyrannid passerine Elaenia chilensis on the island, more snakes were found on vegetation than on the ground. We suggest that one cause may be that these birds forage mostly on vegetation, and thus cause the snakes to search for prey on this arboreal substratum.
Resumo:
The identification of the factors behind the distribution of plant communities in patched habitats may prove useful towards better understanding how ecosystems function. Plant assemblages are especially important for wetland productivity and provide food and habitat to animals. The present study analyses the distribution of a metacommunity of helophytes and phreatophytes in a wetland complex in oder to identify the effects of habitat configuration on the colonisation process. Ponds with wide vegetated shores and a short distance to a big (> 10 ha) wetland, had higher species richness. The average percentage of surface covered by each species in all the wetlands correlated positively with the number of patches occupied by that species. Moreover, the community presented a nested pattern (species-poor patches were subsets of species-rich patches), and this pattern came about by selective extinction and colonisation processes. We also detected the presence of some idiosyncratic species that did not follow nestedness. Conservation managers should attempt to maximise the vegetated shore width and to reduce the degree of isolation to enhance species richness. Furthermore, a single large and poorly isolated reserve may have the highest level of biodiversity in emergent vegetation species in this wetland complex, however, the particular ecological requirements of idiosyncratic species should also be taken into account when managing this type of community.
Resumo:
We investigated the effects of the habitat-modifying green algae Caulerpa taxifolia on meiobenthic communities along the coast of New South Wales, Australia. Samples were taken from unvegetated sediments, sediments underneath the native seagrass Zostera capricorni, and sediments invaded by C. taxifolia at 3 sites along the coast. Meiofaunal responses to invasion varied in type and magnitude depending on the site, ranging from a slight increase to a substantial reduction in meiofauna and nematode abundances and diversity. The multivariate structure of meiofauna communities and nematode assemblages, in particular, differed significantly in sediments invaded by C. taxifolia when compared to native habitats, but the magnitude of this dissimilarity differed between the sites. These differential responses of meiofauna to C. taxifolia were explained by different sediment redox potentials. Sediments with low redox potential showed significantly lower fauna abundances, lower numbers of meiofaunal taxa and nematode species and more distinct assemblages. The response of meiofauna to C. taxifolia also depended on spatial scale. Whereas significant loss of benthic biodiversity was observed locally at one of the sites, at the larger scale C. taxifolia promoted an overall increase in nematode species richness by favouring species that were absent from the native environments. Finally, we suggest there might be some time-lags associated with the impacts of C. taxifolia and point to the importance of considering the time since invasion when evaluating the impact of invasive species.
Resumo:
Identifying the differences in habitat use for sympatric species is important for understanding the species preferences and the limits of population distribution. We studied the differences in the habitat use of two understudied sympatric species of Ameiva (A. festiva and A. quadrilineata) in a natural reserve of the Caribbean coast of Coast Rica. Ameiva quadrilineata showed a more restrictive habitat use pattern than A. festiva. A. quadrilineata's smaller body size may be one of the factors limiting its habitat range. Both species showed higher density in regenerated forests, while A. quadrilineata was never found in swamp forests. The air temperature and the meteorological condition at the moment of the survey also influenced the occurrence of the A. quadrilineata, while the juveniles of A. festiva were only affected by the meteorological condition. None of the studied variables seemed to affect the occurrence of A. festiva adults. The results of this study can be useful to evaluate possible changes in the species distribution patterns as a consequence of direct (i.e., deforestation) or indirect (i.e., climate change) human activities in the distribution area of these species.
Resumo:
The effect of habitat fragmentation on the structure of orchid bee communities was analyzed by the investigation of the existence of a spatial structure in the richness and abundance of Euglossini species and by determining the relationship between these data and environmental factors. The surveys were carried out in four different forest fragments and one university campus. Richness, abundance, and diversity of species were analyzed in relation to abiotic (size of the area, extent of the perimeter, perimeter/area ratio, and shape index) and biotic characteristics (vegetation index of the fragment and of the matrix of each of the locations studied). We observed a highly significant positive correlation between the diversity index and the vegetation index of the fragment, landscape and shape index. Our analysis demonstrated that the observed variation could be explained mainly by the vegetation index and the size of the fragment. Variations in relative abundance showed a tendency toward an aggregated spatial distribution between the fragments studied, as well as between the sampling stations within the same habitat, demonstrating the existence of a spatial structure on a small scale in the populations of Euglossini. This distribution will determine the composition of species that coexist in the area after fragmentation. These data help in understanding the differences and similarities in the structure of communities of Euglossini resulting from forest fragmentation.
Resumo:
Abstract Background The family Accipitridae (hawks, eagles and Old World vultures) represents a large radiation of predatory birds with an almost global distribution, although most species of this family occur in the Neotropics. Despite great morphological and ecological diversity, the evolutionary relationships in the family have been poorly explored at all taxonomic levels. Using sequences from four mitochondrial genes (12S, ATP8, ATP6, and ND6), we reconstructed the phylogeny of the Neotropical forest hawk genus Leucopternis and most of the allied genera of Neotropical buteonines. Our goals were to infer the evolutionary relationships among species of Leucopternis, estimate their relationships to other buteonine genera, evaluate the phylogenetic significance of the white and black plumage patterns common to most Leucopternis species, and assess general patterns of diversification of the group with respect to species' affiliations with Neotropical regions and habitats. Results Our molecular phylogeny for the genus Leucopternis and its allies disagrees sharply with traditional taxonomic arrangements for the group, and we present new hypotheses of relationships for a number of species. The mtDNA phylogenetic trees derived from analysis of the combined data posit a polyphyletic relationship among species of Leucopternis, Buteogallus and Buteo. Three highly supported clades containing Leucopternis species were recovered in our phylogenetic reconstructions. The first clade consisted of the sister pairs L. lacernulatus and Buteogallus meridionalis, and Buteogallus urubitinga and Harpyhaliaetus coronatus, in addition to L. schistaceus and L. plumbeus. The second clade included the sister pair Leucopternis albicollis and L. occidentalis as well as L. polionotus. The third lineage comprised the sister pair L. melanops and L. kuhli, in addition to L. semiplumbeus and Buteo buteo. According to our results, the white and black plumage patterns have evolved at least twice in the group. Furthermore, species found to the east and west of the Andes (cis-Andean and trans-Andean, respectively) are not reciprocally monophyletic, nor are forest and non-forest species. Conclusion The polyphyly of Leucopternis, Buteogallus and Buteo establishes a lack of concordance of current Accipitridae taxonomy with the mtDNA phylogeny for the group, and points to the need for further phylogenetic analysis at all taxonomic levels in the family as also suggested by other recent analyses. Habitat shifts, as well as cis- and trans-Andean disjunctions, took place more than once during buteonine diversification in the Neotropical region. Overemphasis of the black and white plumage patterns has led to questionable conclusions regarding the relationships of Leucopternis species, and suggests more generally that plumage characters should be used with considerable caution in the taxonomic evaluation of the Accipitridae.
Resumo:
The available options for restoring multiple surface cavities are: amalgam, composite resin, or indirect restorations. Adhesive system and intradentinal pin-retained composite resin restorations should have a similar performance to pin-retained amalgam, regarding resistance to support occlusal forces. Polymerization shrinkage is a major concern when performing direct posterior composite resin restorations and the incremental insertion technique can provide less stress and outstanding margin behavior. Intradentinal pins can potentially enhance composite resin's retention, while reducing gaps caused by polymerization shrinkage. This article reports a clinical case involving an extensive restoration on a posterior tooth with cusp loss that was successfully treated using an intradentinal pin and direct nano-hybrid composite resin restoration.
Resumo:
Tesis Universidad Paris 1 Panthéon - Sorbone (France) y Universidad de Las Palmas de Gran Canaria, 2002. Precede al título Laboratoire de Géographie Physique UMR 8591 CNRS Meudon
Resumo:
[EN] Global warming is affecting all major ecosystems, including temperate reefs where canopy-forming seaweeds provide biogenic habitat. In contrast to the rapidly growing recognition of how climate affects the performance and distribution of individuals and populations, relatively little is known about possible links between climate and biogenic habitat structure. We examined the relationship between several ocean temperature characteristics, expressed on time-scales of days, months and years, on habitat patch characteristics on 24 subtidal temperate reefs along a latitudinal gradient (Western Australia; ca 34 to 27º S). Significant climate related variation in habitat structure was observed, even though the landscape cover of kelp and fucalean canopies did not change across the climate gradient: monospecific patches of kelp became increasingly dominant in warmer climates, at the expense of mixed kelp-fucalean canopies. The decline in mixed canopies was associated with an increase in the abundance of Sargassum spp., replacing a more diverse canopy assemblage of Scytothalia doryocarpa and several other large fucoids. There were no observed differences in the proportion of open gaps or gap characteristics. These habitat changes were closely related to patterns in minimum temperatures and temperature thresholds (days > 20 °C), presumably because temperate algae require cool periods for successful reproduction and recruitment (even if the adults can survive warmer temperatures). Although the observed habitat variation may appear subtle, similar structural differences have been linked to a range of effects on canopy-associated organisms through the provision of habitat and ecosystem engineering. Consequently, our study suggests that the magnitude of projected temperature increase is likely to cause changes in habitat structure and thereby indirectly affect numerous habitat-dependent plants and animals
Resumo:
[EN] The presence of a mosaic of habitats, largely determined by sea urchin grazing, across shallow rocky reefs may potentially influence in differences in the distribution patterns of invertebrates. The aim of this paper was to assess, using a correlative approach, whether the type of habitat influences the abundance patterns of holothurians in the eastern Atlantic. We hypothesized that abundances of large (> 10 cm) holothurians varied among four types of habitat (3 vegetated habitats with low abundances of the sea urchin D. antillarum versus ?barrens? with hyperabundances of sea urchins), and that these differences were consistent at a hierarchy of spatial scales, including two islands and several replicated sites within each type of habitat and island. Three species of large holothurians were found, accounting for a total of 300 specimens. We found remarkable differences in abundances of holothurians between the ?barrens? and the three vegetated habitats. This pattern was strongest for the numerically dominant species, Holothuria sanctorii. Total abundances of holothurians were between 5 ? 46 times more abundant in ?barrens? compared with the vegetated habitats. Inter-habitat differences were species-specific with some inconsistent patterns from one island to the other. The total abundances of holothurians tended to increase with the abundance of sea urchins within ?barrens?. Our study suggests that there may be a link, at least for the dominant species Holothuria sanctorii, between the distribution and abundances of large holothurians and the habitat across shallow-waters of the eastern Atlantic.