878 resultados para genetic screeing and testing


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neurodevelopmental disorders can be caused by many different genetic abnormalities that are individually rare but collectively common. Specific genetic causes, including certain copy number variants and single-gene mutations, are shared among disorders that are thought to be clinically distinct. This evidence of variability in the clinical manifestations of individual genetic variants and sharing of genetic causes among clinically distinct brain disorders is consistent with the concept of developmental brain dysfunction, a term we use to describe the abnormal brain function underlying a group of neurodevelopmental and neuropsychiatric disorders and to encompass a subset of various clinical diagnoses. Although many pathogenic genetic variants are currently thought to be variably penetrant, we hypothesise that when disorders encompassed by developmental brain dysfunction are considered as a group, the penetrance will approach 100%. The penetrance is also predicted to approach 100% when the phenotype being considered is a specific trait, such as intelligence or autistic-like social impairment, and the trait could be assessed using a continuous, quantitative measure to compare probands with non-carrier family members rather than a qualitative, dichotomous trait and comparing probands with the healthy population. Copyright 2013 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Epstein-Barr virus (EBV) is associated with several types of cancers including Hodgkin's lymphoma (HL) and nasopharyngeal carcinoma (NPC). EBV-encoded latent membrane protein 1 (LMP1), a multifunctional oncoprotein, is a powerful activator of the transcription factor NF-κB, a property that is essential for EBV-transformed lymphoblastoid cell survival. Previous studies reported LMP1 sequence variations and induction of higher NF-κB activation levels compared to the prototype B95-8 LMP1 by some variants. Here we used biopsies of EBV-associated cancers and blood of individuals included in the Swiss HIV Cohort Study (SHCS) to analyze LMP1 genetic diversity and impact of sequence variations on LMP1-mediated NF-κB activation potential. We found that a number of variants mediate higher NF-κB activation levels when compared to B95-8 LMP1 and mapped three single polymorphisms responsible for this phenotype: F106Y, I124V and F144I. F106Y was present in all LMP1 isolated in this study and its effect was variant dependent, suggesting that it was modulated by other polymorphisms. The two polymorphisms I124V and F144I were present in distinct phylogenetic groups and were linked with other specific polymorphisms nearby, I152L and D150A/L151I, respectively. The two sets of polymorphisms, I124V/I152L and F144I/D150A/L151I, which were markers of increased NF-κB activation in vitro, were not associated with EBV-associated HL in the SHCS. Taken together these results highlighted the importance of single polymorphisms for the modulation of LMP1 signaling activity and demonstrated that several groups of LMP1 variants, through distinct mutational paths, mediated enhanced NF-κB activation levels compared to B95-8 LMP1.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Environmental changes affecting the relationship between the developing immune system and microbial exposure have been implicated in the epidemic rise of allergic disease in developed countries. While early developmental differences in T cell function are well-recognised, there is now emerging evidence that this is related to developmental differences in innate immune function. In this study we sought to examine if differences associated with innate immunity contribute to the altered immune programming recognised in allergic children. Here, we describe for the first time, the association of carriage of the T allele of the tagging single nucleotide polymorphism rs12979860 3 kb upstream of IL28B, encoding the potent innate immune modulator type III interferon lambda (IFN-λ3), and allergy in children (p = 0.004; OR 4.56). Strikingly, the association between rs12979860 genotype and allergic disease is enhanced in girls. Furthermore, carriage of the T allele at rs12979860 correlates with differences in the pro-inflammatory profile during the first five years of life suggesting this contributes to the key differences in subsequent innate immune development in children who develop allergic disease. In the context of rising rates of disease, these immunologic differences already present at birth imply very early interaction between genetic predisposition and prenatal environmental influences.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The coevolution of parental investment and offspring solicitation is driven by partly different evolutionary interests of genes expressed in parents and their offspring. In species with biparental care, the outcome of this conflict ma!: be influenced by the sexual conflict over parental investment, Models for the resolution of such family conflicts have made so far untested assumptions about genetic variation and covariation in the parental resource provisioning response and the level of offspring solicitation. Using a combination of cross-fostering and begging playback experiments, we show that, in the great tit (Parus major), (i) the begging call intensity of nestlings depends on their common origin, suggesting genetic variation for this begging display, (ii) only mothers respond to begging calls by increased food provisioning, and (iii! the size of the parental response is positively related to the begging call intensity of nestlings in the maternal but not paternal line. This study indicates that genetic covariation, its differential expression in the maternal and paternal lines and/or early environmental and parental effects need to be taken into account when predicting the phenotypic outcome of the conflict over investment between genes expressed in each parent and the offspring. [References: 36]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Environment and genetics influence the manifestation of recurrent airway obstruction (RAO), but the associations of specific factors with mild, moderate, and severe clinical signs are unknown. HYPOTHESIS: We hypothesized that sire, feed, bedding, time outdoors, sex, and age are associated with clinical manifestations of mild, moderate, and severe lower airway disease. ANIMALS: Direct offspring of 2 RAO-affected Warmblood stallions (F1S1, n = 172; F1S2, n = 135); maternal half-siblings of F1S1 (mHSS1, n = 66); and an age-matched, randomly chosen control group (CG, n = 33). METHODS: A standardized questionnaire was used to assess potential risk factors and to establish a horse owner assessed respiratory signs index (HOARSI 1-4, from healthy to severe) according to clinical signs of lower airway disease. RESULTS: More F1S1 and F1S2 horses showed moderate to severe clinical signs (HOARSI 3 and HOARSI 4 combined, 29.6 and 27.3%, respectively) compared with CG and mHSS1 horses (9.1 and 6.2%, respectively; contingency table overall test, P < .001). Sire, hay feeding, and age (in decreasing order of strength) were associated with more severe clinical signs (higher HOARSI), more frequent coughing, and nasal discharge. CONCLUSIONS AND CLINICAL RELEVANCE: There is a genetic predisposition and lesser but also marked effects of hay feeding and age on the manifestation of moderate to severe clinical signs, most markedly on coughing frequency. In contrast, mild clinical signs were not associated with sire or hay feeding in our populations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In Switzerland, a national database with 1028 Campylobacter isolates from poultry, pigs, cats, dogs, cattle, humans, zoo animals and water has been created. The database contains the genetic fingerprint and background information of each Campylobacter isolate. Dominant species could be identified in the different sources with a majority of Campylobacter jejuni in poultry (73%), humans (79%), cattle (95%), zoo animals (40%) and water (100%), of Campylobacter coli in pigs (72%), and of Campylobacter upsaliensis/helveticus in cats and dogs (55%). The comparison of three genotyping methods, amplified fragment length polymorphism (AFLP), pulsed field gel electrophoresis and restriction fragment length polymorphism, revealed that AFLP allows discrimination between the different Campylobacter species and is the most appropriate method to distinguish specific strains within the same species. Genotyping analysis demonstrated that the Campylobacter population is heterogeneous among the different sources and that no dominant clone is spread in the country. Genotyping and the resulting database are useful tools to trace back future Campylobacter infections.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aims The effect Of anthropogenic landscape fragmentation on the genetic diversity and adaptive potential of plant populations is a major issue in conservation biology. However, little is known about the partitioning of genetic diversity in alpine species, which occur in naturally fragmented habitats. Here, we, investigate molecular patterns of three alpine plants (Epilobium fleischeri, Geum reptans and Campanula thyrsoides) across Switzerland and ask whether Spatial isolation has led to high levels of populations differentiation, increasing over distance, and a decrease of within-population variability. We further hypothesize that file contrasting potential for long-distance dispersal (LDD) of Seed in these Species will considerably influence and explain diversity partitioning. Methods For each study species, we Sampled 20-23 individuals from each of 20-32 populations across entire Switzerland. We applied Random Amplified Polymorphic Dimorphism markers to assess genetic diversity within (Nei's expected heterozygosity, H-e; percentage of polymorphic hands, P-P) and among (analysis of molecular variance, Phi(st)) populations and correlated population size and altitude with within-populalion diversity. Spatial patterns of genetic relatedness were investigated using Mantel tests and standardized major axis regression as well as unweighted pair group method with arithmetic mean cluster analyses and Monmonier's algorithm. To avoid known biases, We standardized the numbers of populations, individuals and markers using multiple random reductions. We modelled LDD with a high alpine wind data set using the terminal velocity and height of seed release as key parameters. Additionally, we assessed a number of important life-history traits and factors that potentially influence genetic diversity partitioning (e.g. breeding system, longevity and population size). Important findings For all three species, We found a significant isolation-by-distance relationship but only a moderately high differentiation among populations (Phi(st): 22.7, 48 and 16.8%, for E. fleischeri, G. reptans and C. thyrsoides, respectively). Within-population diversity (H-c: 0.19-0.21, P-p: 62-75%) was not reduced in comparison to known results from lowland species and even small populations with < 50 reproductive individuals contained high levels of genetic diversity. We further found no indication that a high long-distance seed dispersal potential enhances genetic connectivity among populations. Gene flow seems to have a strong stochastic component causing large dissimilarity between population pairs irrespective of the spatial distance. Our results suggest that other life-history traits, especially the breeding System, may play an important role in genetic diversity partitioning. We conclude that spatial isolation in the alpine environment has a strong influence on population relatedness but that a number of factors can considerably influence the strength of this relationship.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Understanding the spatiotemporal distribution of genetic variation and the ways in which this distribution is connected to the ecological context of natural populations is fundamental for understanding the nature and mode of intraspecific and, ultimately, interspecific differentiation. The Petunia axillaris complex is endemic to the grasslands of southern South America and includes three subspecies: P.a.axillaris, P.a.parodii and P.a.subandina. These subspecies are traditionally delimited based on both geography and floral morphology, although the latter is highly variable. Here, we determined the patterns of genetic (nuclear and cpDNA), morphological and ecological (bioclimatic) variation of a large number of P.axillaris populations and found that they are mostly coincident with subspecies delimitation. The nuclear data suggest that the subspecies are likely independent evolutionary units, and their morphological differences may be associated with local adaptations to diverse climatic and/or edaphic conditions and population isolation. The demographic dynamics over time estimated by skyline plot analyses showed different patterns for each subspecies in the last 100000years, which is compatible with a divergence time between 35000 and 107000years ago between P.a.axillaris and P.a.parodii, as estimated with the IMa program. Coalescent simulation tests using Approximate Bayesian Computation do not support previous suggestions of extensive gene flow between P.a.axillaris and P.a.parodii in their contact zone.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The long QT syndrome (LQTS) is a genetic disorder characterized by prolongation of the QT interval in the electrocardiogram (ECG) and a propensity to "torsades de pointes" ventricular tachycardia frequently leading to syncope, cardiac arrest, or sudden death usually in young otherwise healthy individuals. LQTS caused by mutations of predominantly potassium and sodium ion channel genes or channel-interacting proteins leading to positive overcharge of myocardial cell with consequent heterogeneous prolongation of repolarization in various layers and regions of myocardium. These conditions facilitate the early after-depolarization and reentry phenomena underlying development of polymorphic ventricular tachycardia observed in patients with LQTS. Obtaining detailed patient history regarding cardiac events in the patient and his/her family members combined with careful interpretation of standard 12-lead ECG (with precise measurement of QT interval in all available ECGs and evaluation of T-wave morphology) usually is sufficient to diagnose the syndrome. The LQTS show great genetic heterogeneity and has been identified more than 500 mutations distributed in 10 genes: KCNQ1, HERG, SCN5A, KCNE1, KCNE2, ANKB, KCNJ2, CACNA1A, CAV3 and SCN4B. Despite advances in the field, 25-30% of patients remain undiagnosed genetic. Genetic testing plays an important role and is particularly useful in cases with nondiagnostic or borderline ECG findings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The interpretation of data on genetic variation with regard to the relative roles of different evolutionary factors that produce and maintain genetic variation depends critically on our assumptions concerning effective population size and the level of migration between neighboring populations. In humans, recent population growth and movements of specific ethnic groups across wide geographic areas mean that any theory based on assumptions of constant population size and absence of substructure is generally untenable. We examine the effects of population subdivision on the pattern of protein genetic variation in a total sample drawn from an artificial agglomerate of 12 tribal populations of Central and South America, analyzing the pooled sample as though it were a single population. Several striking findings emerge. (1) Mean heterozygosity is not sensitive to agglomeration, but the number of different alleles (allele count) is inflated, relative to neutral mutation/drift/equilibrium expectation. (2) The inflation is most serious for rare alleles, especially those which originally occurred as tribally restricted "private" polymorphisms. (3) The degree of inflation is an increasing function of both the number of populations encompassed by the sample and of the genetic divergence among them. (4) Treating an agglomerated population as though it were a panmictic unit of long standing can lead to serious biases in estimates of mutation rates, selection pressures, and effective population sizes. Current DNA studies indicate the presence of numerous genetic variants in human populations. The findings and conclusions of this paper are all fully applicable to the study of genetic variation at the DNA level as well.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Individuals with Lynch syndrome are predisposed to cancer due to an inherited DNA mismatch repair gene mutation. However, there is significant variability observed in disease expression likely due to the influence of other environmental, lifestyle, or genetic factors. Polymorphisms in genes encoding xenobiotic-metabolizing enzymes may modify cancer risk by influencing the metabolism and clearance of potential carcinogens from the body. In this retrospective analysis, we examined key candidate gene polymorphisms in CYP1A1, EPHX1, GSTT1, GSTM1, and GSTP1 as modifiers of age at onset of colorectal cancer among 257 individuals with Lynch syndrome. We found that subjects heterozygous for CYP1A1 I462V (c.1384A>G) developed colorectal cancer 4 years earlier than those with the homozygous wild-type genotype (median ages, 39 and 43 years, respectively; log-rank test P = 0.018). Furthermore, being heterozygous for the CYP1A1 polymorphisms, I462V and Msp1 (g.6235T>C), was associated with an increased risk for developing colorectal cancer [adjusted hazard ratio for AG relative to AA, 1.78; 95% confidence interval, 1.16-2.74; P = 0.008; hazard ratio for TC relative to TT, 1.53; 95% confidence interval, 1.06-2.22; P = 0.02]. Because homozygous variants for both CYP1A1 polymorphisms were rare, risk estimates were imprecise. None of the other gene polymorphisms examined were associated with an earlier onset age for colorectal cancer. Our results suggest that the I462V and Msp1 polymorphisms in CYP1A1 may be an additional susceptibility factor for disease expression in Lynch syndrome because they modify the age of colorectal cancer onset by up to 4 years.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND Vitamin D deficiency is prevalent in HIV-infected individuals and vitamin D supplementation is proposed according to standard care. This study aimed at characterizing the kinetics of 25(OH)D in a cohort of HIV-infected individuals of European ancestry to better define the influence of genetic and non-genetic factors on 25(OH)D levels. These data were used for the optimization of vitamin D supplementation in order to reach therapeutic targets. METHODS 1,397 25(OH)D plasma levels and relevant clinical information were collected in 664 participants during medical routine follow up visits. They were genotyped for 7 SNPs in 4 genes known to be associated with 25(OH)D levels. 25(OH)D concentrations were analyzed using a population pharmacokinetic approach. The percentage of individuals with 25(OH)D concentrations within the recommended range of 20-40ng/ml during 12 months of follow up and several dosage regimens were evaluated by simulation. RESULTS A one-compartment model with linear absorption and elimination was used to describe 25(OH)D pharmacokinetics, while integrating endogenous baseline plasma concentrations. Covariate analyses confirmed the effect of seasonality, body mass index, smoking habits, the analytical method, darunavir/r and the genetic variant in GC (rs2282679) on 25(OH)D concentrations. 11% of the interindividual variability in 25(OH)D levels was explained by seasonality and other non-genetic covariates and 1% by genetics. The optimal supplementation for severe vitamin D deficient patients was 300000 IU two times per year. CONCLUSIONS This analysis allowed identifying factors associated with 25(OH)D plasma levels in HIV-infected individuals. Improvement of dosage regimen and timing of vitamin D supplementation is proposed based on those results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND After heart transplantation (HTx), the interindividual pharmacokinetic variability of immunosuppressive drugs represents a major therapeutic challenge due to the narrow therapeutic window between over-immunosuppression causing toxicity and under-immunosuppression leading to graft rejection. Although genetic polymorphisms have been shown to influence pharmacokinetics of immunosuppressants, data in the context of HTx are scarce. We thus assessed the role of genetic variation in CYP3A4, CYP3A5, POR, NR1I2, and ABCB1 acting jointly in immunosuppressive drug pathways in tacrolimus (TAC) and ciclosporin (CSA) dose requirement in HTx recipients. METHODS Associations between 7 functional genetic variants and blood dose-adjusted trough (C0) concentrations of TAC and CSA at 1, 3, 6, and 12 months after HTx were evaluated in cohorts of 52 and 45 patients, respectively. RESULTS Compared with CYP3A5 nonexpressors (*3/*3 genotype), CYP3A5 expressors (*1/*3 or *1/*1 genotype) required around 2.2- to 2.6-fold higher daily TAC doses to reach the targeted C0 concentration at all studied time points (P ≤ 0.003). Additionally, the POR*28 variant carriers showed higher dose-adjusted TAC-C0 concentrations at all time points resulting in significant differences at 3 (P = 0.025) and 6 months (P = 0.047) after HTx. No significant associations were observed between the genetic variants and the CSA dose requirement. CONCLUSIONS The CYP3A5*3 variant has a major influence on the required TAC dose in HTx recipients, whereas the POR*28 may additionally contribute to the observed variability. These results support the importance of genetic markers in TAC dose optimization after HTx.