928 resultados para fungal reproduction
Resumo:
Cryptococcus neoformans STE12α, a homologue of Saccharomyces cerevisiae STE12, exists only in MATα strains. We identified another STE12 homologue, STE12a, which is MATa specific. As in the case with Δste12α, the mating efficiency for Δste12a was reduced significantly. The Δste12a strains surprisingly still mated with Δste12α strains. In MATα strains, STE12a functionally complemented STE12α for mating efficacy, haploid fruiting, and regulation of capsule size in the mouse brain. Furthermore, when STE12a was replaced with two copies of STE12α, the resulting MATa strain produced hyphae on filament agar. STE12a regulates mRNA levels of several genes that are important for virulence including CNLAC1 and CAP genes. STE12a also modulates enzyme activities of phospholipase and superoxide dismutase. Importantly, deletion of STE12a markedly reduced the virulence in mice, as is the case with STE12α. Brain smears of mice infected with the Δste12a strain showed yeast cells with a considerable reduction in capsule size compared with those infected with STE12a strains. When the disrupted locus of ste12a was replaced with a wild-type STE12a gene, both in vivo and in vitro mutant phenotypes were reversed. These results suggest that STE12a and STE12α have similar functions, and that the mating type of the cells influences the alleles to exert their biological effects. C. neoformans, thus, is the first fungal species that contains a mating-type-specific STE12 homologue in each mating type. Our results demonstrate that mating-type-specific genes are not only important for saprobic reproduction but also play an important role for survival of the organism in host tissue.
Resumo:
Two key genes in terpenoid indole alkaloid biosynthesis, Tdc and Str, encoding tryptophan decarboxylase and strictosidine synthase, respectively, are coordinately induced by fungal elicitors in suspension-cultured Catharanthus roseus cells. We have studied the roles of the jasmonate biosynthetic pathway and of protein phosphorylation in signal transduction initiated by a partially purified elicitor from yeast extract. In addition to activating Tdc and Str gene expression, the elicitor also induced the biosynthesis of jasmonic acid. The jasmonate precursor α-linolenic acid or methyl jasmonate (MeJA) itself induced Tdc and Str gene expression when added exogenously . Diethyldithiocarbamic acid, an inhibitor of jasmonate biosynthesis, blocked both the elicitor-induced formation of jasmonic acid and the activation of terpenoid indole alkaloid biosynthetic genes. The protein kinase inhibitor K-252a abolished both elicitor-induced jasmonate biosynthesis and MeJA-induced Tdc and Str gene expression. Analysis of the expression of Str promoter/gusA fusions in transgenic C. roseus cells showed that the elicitor and MeJA act at the transcriptional level. These results demonstrate that the jasmonate biosynthetic pathway is an integral part of the elicitor-triggered signal transduction pathway that results in the coordinate expression of the Tdc and Str genes and that protein kinases act both upstream and downstream of jasmonates.
Resumo:
We describe in this study punchless, a nonpathogenic mutant from the rice blast fungus M. grisea, obtained by plasmid-mediated insertional mutagenesis. As do most fungal plant pathogens, M. grisea differentiates an infection structure specialized for host penetration called the appressorium. We show that punchless differentiates appressoria that fail to breach either the leaf epidermis or artificial membranes such as cellophane. Cytological analysis of punchless appressoria shows that they have a cellular structure, turgor, and glycogen content similar to those of wild type before penetration, but that they are unable to differentiate penetration pegs. The inactivated gene, PLS1, encodes a putative integral membrane protein of 225 aa (Pls1p). A functional Pls1p-green fluorescent protein fusion protein was detected only in appressoria and was localized in plasma membranes and vacuoles. Pls1p is structurally related to the tetraspanin family. In animals, these proteins are components of membrane signaling complexes controlling cell differentiation, motility, and adhesion. We conclude that PLS1 controls an appressorial function essential for the penetration of the fungus into host leaves.
Resumo:
Sequences of nuclear-encoded small-subunit rRNA genes have been determined for representatives of the enigmatic genera Dermocystidium, Ichthyophonus, and Psorospermium, protistan parasites of fish and crustaceans. The small-subunit rRNA genes from these parasites and from the "rosette agent" (also a parasite of fish) together form a novel, statistically supported clade. Phylogenetic analyses demonstrate this clade to diverge near the animal-fungal dichotomy, although more precise resolution is problematic. In the most parsimonious and maximally likely phylogenetic frameworks inferred from the most stably aligned sequence regions, the clade constitutes the most basal branch of the metazoa; but within a limited range of model parameters, and in some analyses that incorporate less well-aligned sequence regions, an alternative topology in which it diverges immediately before the animal-fungal dichotomy was recovered. Mitochondrial cristae of Dermocystidium spp. are flat, whereas those of Ichthyophonus hoferi appear tubulovesiculate. These results extend our understanding of the types of organisms from which metazoa and fungi may have evolved.
Resumo:
Persistent infection of the chestnut blight fungus Cryphonectria parasitica with the prototypic hypovirus CHVI-713 results in attenuation of fungal virulence (hypo-virulence) and reduced accumulation of the GTP-binding (G) protein a subunit CPG-1. Transgenic cosuppression of CPG-1 accumulation in the absence of virus infection also confers hypovirulence. We now report the use of mRNA differential display to examine the extent to which virus infection alters fungal gene transcript accumulation and to assess the degree to which modification of CPG-1 signal transduction contributes to this alteration. More than 400 PCR products were identified that either increased (296 products) or decreased (127 products) in abundance as a result of virus infection. Significantly, 65% of these products exhibited similar changes as a result of CPG-1 cosuppression in the absence of virus infection. We also report that both virus infection and CPG-1 cosuppression elevate cAMP levels 3- to 5-fold. Additionally, it was possible to mimic the effect of virus infection and CPG-1 cosuppression on transcript accumulation for representative fungal genes by drug-induced elevation of cAMP levels. These results strengthen and extend previous indications that hypovirus infection causes a significant and persistent alteration of fungal gene expression/transcript accumulation. They further show that this alteration is primarily mediated through modification of the CPG-1 signaling pathway and suggest that, similar to mammalian Gi alpha subunits, CPG-1 functions as a negative modulator of adenylyl cyclase. Finally, these results suggest a role for G-protein-regulated cAMP accumulation in hypovirus-mediated alteration of fungal gene expression.
The terminal Paleozoic fungal event: evidence of terrestrial ecosystem destabilization and collapse.
Resumo:
Because of its prominent role in global biomass storage, land vegetation is the most obvious biota to be investigated for records of dramatic ecologic crisis in Earth history. There is accumulating evidence that, throughout the world, sedimentary organic matter preserved in latest Permian deposits is characterized by unparalleled abundances of fungal remains, irrespective of depositional environment (marine, lacustrine, fluviatile), floral provinciality, and climatic zonation. This fungal event can be considered to reflect excessive dieback of arboreous vegetation, effecting destabilization and subsequent collapse of terrestrial ecosystems with concomitant loss of standing biomass. Such a scenario is in harmony with predictions that the Permian-Triassic ecologic crisis was triggered by the effects of severe changes in atmospheric chemistry arising from the rapid eruption of the Siberian Traps flood basalts.
Resumo:
In North America there are two generally recognized pathotypes (pathotypes 1 and 2) of the fungus Entomophaga grylli which show host-preferential infection of grasshopper subfamilies. Pathotype 3, discovered in Australia, has a broader grasshopper host range and was considered to be a good biocontrol agent. Between 1989 and 1991 pathotype 3 was introduced at two field sites in North Dakota. Since resting spores are morphologically indistinguishable among pathotypes, we used pathotype-specific DNA probes to confirm pathotype identification in E. grylli-infected grasshoppers collected at the release sites in 1992, 1993, and 1994. In 1992, up to 23% of E. grylli-infected grasshoppers of the subfamilies Melanoplinae, Oedipodinae, and Gomphocerinae were infected by pathotype 3, with no infections > 1 km from the release sites. In 1993, pathotype 3 infections declined to 1.7%. In 1994 grasshopper populations were low and no pathotype 3 infections were found. The frequency of pathotype 3 infection has declined to levels where its long-term survival in North America is questionable. Analyses of biocontrol releases are critical to evaluating the environmental risks associated with these ecological manipulations, and molecular probes are powerful tools for monitoring biocontrol releases.
Resumo:
Extracellular cellulase activity is readily induced when the chestnut blight fungus Cryphonectria parasitica is grown on cellulose substrate as the sole carbon source. However, an isogenic C. parasitica strain rendered hypovirulent due to hypovirus infection failed to secrete detectable cellulase activity when grown under parallel conditions. Efforts to identify C. parasitica cellulase-encoding genes resulted in the cloning of a cellobiohydrolase (exoglucanase, EC 3.2.1.91) gene designated chb-1. Northern blot analysis revealed an increase in cbh-1 transcript accumulation in a virus-free virulent C. parasitica strain concomitant with the induction of extracellular cellulase activity. In contrast, induction of cbh-1 transcript accumulation was suppressed in an isogenic hypovirus-infected strain. Significantly, virus-free C. parasitica strains rendered hypovirulent by transgenic cosuppression of a GTP-binding protein alpha subunit were also found to be deficient in the induction of cbh-1 transcript accumulation.
Resumo:
Type I hereditary tyrosinaemia (HT1) is a severe human inborn disease resulting from loss of fumaryl-acetoacetate hydrolase (Fah). Homozygous disruption of the gene encoding Fah in mice causes neonatal lethality, seriously limiting use of this animal as a model. We report here that fahA, the gene encoding Fah in the fungus Aspergillus nidulans, encodes a polypeptide showing 47.1% identity to its human homologue, fahA disruption results in secretion of succinylacetone (a diagnostic compound for human type I tyrosinaemia) and phenylalanine toxicity. We have isolated spontaneous suppressor mutations preventing this toxicity, presumably representing loss-of-function mutations in genes acting upstream of fahA in the phenylalanine catabolic pathway. Analysis of a class of these mutations demonstrates that loss of homogentisate dioxygenase (leading to alkaptonuria in humans) prevents the effects of a Fah deficiency. Our results strongly suggest human homogentisate dioxygenase as a target for HT1 therapy and illustrate the usefulness of this fungus as an alternative to animal models for certain aspects of human metabolic diseases.
Resumo:
Monkeys with excellent reproductive histories were immunized with the laminin peptides YIGSR, RGD, IKVAV, and YD, a control sequence with no known biological function. Sera from the YIGSR-immunized monkey became toxic, causing neural tube defects in whole rat embryo cultures, and this monkey experienced fetal loss after immunization. Sera from the RGD-immunized monkey also became embryotoxic in culture after immunization, but this monkey appeared to become infertile as she failed to initiate a pregnancy for at least 2 years after immunization. In contrast, embryos cultured on sera from the IKVAV- or YD-immunized monkeys were predominantly normal and both monkeys completed successful pregnancies. Antibody levels to the respective peptides or to laminin were not predictive of embryotoxicity, but antibody binding to homogenized yolk sacs as well as to yolk sacs of cultured embryos was associated with sera embryotoxicity and reproductive outcomes in vivo. These observations suggested that the laminin sequences YIGSR and RGD may play a role in immune-mediated reproductive failure by reacting directly with embryonic tissue and could provide a basis for identifying individuals at risk for both spontaneous abortion and infertility.
Resumo:
We have employed Arabidopsis thaliana as a model host plant to genetically dissect the molecular pathways leading to disease resistance. A. thaliana accession Col-0 is susceptible to the bacterial pathogen Pseudomonas syringae pv. tomato strain DC3000 but resistant in a race-specific manner to DC3000 carrying any one of the cloned avirulence genes avrB, avrRpm1, avrRpt2, and avrPph3. Fast-neutron-mutagenized Col-0 M2 seed was screened to identify mutants susceptible to DC3000(avrB). Disease assays and analysis of in planta bacterial growth identified one mutant, ndr1-1 (nonrace-specific disease resistance), that was susceptible to DC3000 expressing any one of the four avirulence genes tested. Interestingly, a hypersensitive-like response was still induced by several of the strains. The ndr1-1 mutation also rendered the plant susceptible to several avirulent isolates of the fungal pathogen Peronospora parasitica. Genetic analysis of ndr1-1 demonstrated that the mutation segregated as a single recessive locus, located on chromosome III. Characterization of the ndr1-1 mutation suggests that a common step exists in pathways of resistance to two unrelated pathogens.
Resumo:
Background: Chitosan oligosaccharide (COS), a deacetylated derivative of chitin, is an abundant, and renewable natural polymer. COS has higher antimicrobial properties than chitosan and is presumed to act by disrupting/permeabilizing the cell membranes of bacteria, yeast and fungi. COS is relatively non-toxic to mammals. By identifying the molecular and genetic targets of COS, we hope to gain a better understanding of the antifungal mode of action of COS. Results: Three different chemogenomic fitness assays, haploinsufficiency (HIP), homozygous deletion (HOP), and multicopy suppression (MSP) profiling were combined with a transcriptomic analysis to gain insight in to the mode of action and mechanisms of resistance to chitosan oligosaccharides. The fitness assays identified 39 yeast deletion strains sensitive to COS and 21 suppressors of COS sensitivity. The genes identified are involved in processes such as RNA biology (transcription, translation and regulatory mechanisms), membrane functions (e.g. signalling, transport and targeting), membrane structural components, cell division, and proteasome processes. The transcriptomes of control wild type and 5 suppressor strains overexpressing ARL1, BCK2, ERG24, MSG5, or RBA50, were analyzed in the presence and absence of COS. Some of the up-regulated transcripts in the suppressor overexpressing strains exposed to COS included genes involved in transcription, cell cycle, stress response and the Ras signal transduction pathway. Down-regulated transcripts included those encoding protein folding components and respiratory chain proteins. The COS-induced transcriptional response is distinct from previously described environmental stress responses (i.e. thermal, salt, osmotic and oxidative stress) and pre-treatment with these well characterized environmental stressors provided little or any resistance to COS. Conclusions: Overexpression of the ARL1 gene, a member of the Ras superfamily that regulates membrane trafficking, provides protection against COS-induced cell membrane permeability and damage. We found that the ARL1 COS-resistant over-expression strain was as sensitive to Amphotericin B, Fluconazole and Terbinafine as the wild type cells and that when COS and Fluconazole are used in combination they act in a synergistic fashion. The gene targets of COS identified in this study indicate that COS’s mechanism of action is different from other commonly studied fungicides that target membranes, suggesting that COS may be an effective fungicide for drug-resistant fungal pathogens.