985 resultados para function extension
Resumo:
The connections between convexity and submodularity are explored, for purposes of minimizing and learning submodular set functions.
First, we develop a novel method for minimizing a particular class of submodular functions, which can be expressed as a sum of concave functions composed with modular functions. The basic algorithm uses an accelerated first order method applied to a smoothed version of its convex extension. The smoothing algorithm is particularly novel as it allows us to treat general concave potentials without needing to construct a piecewise linear approximation as with graph-based techniques.
Second, we derive the general conditions under which it is possible to find a minimizer of a submodular function via a convex problem. This provides a framework for developing submodular minimization algorithms. The framework is then used to develop several algorithms that can be run in a distributed fashion. This is particularly useful for applications where the submodular objective function consists of a sum of many terms, each term dependent on a small part of a large data set.
Lastly, we approach the problem of learning set functions from an unorthodox perspective---sparse reconstruction. We demonstrate an explicit connection between the problem of learning set functions from random evaluations and that of sparse signals. Based on the observation that the Fourier transform for set functions satisfies exactly the conditions needed for sparse reconstruction algorithms to work, we examine some different function classes under which uniform reconstruction is possible.
Resumo:
Borno State possesses great potentials for fish production both from inland fisheries and aquaculture. The socio-economic and environmental production factors are suitable for fish production. If the potential of the State were well harnessed, it would be playing significant roles in achieving self-sufficiency in fish production in Nigeria. But the situation at the moment is that its fisheries potentials are not being optimally utilized. While the inland waters of Lake Chad are currently being recklessly exploited, aquaculture development is given little or no attention. It is evident that there is a missing link between research results and the potential end users. Because information in fish production variables is a pre-requisite for fisheries development, the gap that exists between two poles must be bridged, fisheries Extension provides this important link between research result and the end users of research findings. The paper examines the importance of extension services as the key to unlock fish production information that are usually consigned to the pages of academic journals and research publications
Resumo:
The SCF ubiquitin ligase complex of budding yeast triggers DNA replication by cata lyzi ng ubiquitination of the S phase CDK inhibitor SIC1. SCF is composed of several evolutionarily conserved proteins, including ySKP1, CDC53 (Cullin), and the F-box protein CDC4. We isolated hSKP1 in a two-hybrid screen with hCUL1, the human homologue of CDC53. We showed that hCUL1 associates with hSKP1 in vivo and directly interacts with hSKP1 and the human F-box protein SKP2 in vitro, forming an SCF-Iike particle. Moreover, hCUL1 complements the growth defect of yeast CDC53^(ts) mutants, associates with ubiquitination-promoting activity in human cell extracts, and can assemble into functional, chimeric ubiquitin ligase complexes with yeast SCF components. These data demonstrated that hCUL1 functions as part of an SCF ubiquitin ligase complex in human cells. However, purified human SCF complexes consisting of CUL1, SKP1, and SKP2 are inactive in vitro, suggesting that additional factors are required.
Subsequently, mammalian SCF ubiquitin ligases were shown to regulate various physiological processes by targeting important cellular regulators, like lĸBα, β-catenin, and p27, for ubiquitin-dependent proteolysis by the 26S proteasome. Little, however, is known about the regulation of various SCF complexes. By using sequential immunoaffinity purification and mass spectrometry, we identified proteins that interact with human SCF components SKP2 and CUL1 in vivo. Among them we identified two additional SCF subunits: HRT1, present in all SCF complexes, and CKS1, that binds to SKP2 and is likely to be a subunit of SCF5^(SKP2) complexes. Subsequent work by others demonstrated that these proteins are essential for SCF activity. We also discovered that COP9 Signalosome (CSN), previously described in plants as a suppressor of photomorphogenesis, associates with CUL1 and other SCF subunits in vivo. This interaction is evolutionarily conserved and is also observed with other Cullins, suggesting that all Cullin based ubiquitin ligases are regulated by CSN. CSN regulates Cullin Neddylation presumably through CSNS/JAB1, a stochiometric Signalosome subunit and a putative deneddylating enzyme. This work sheds light onto an intricate connection that exists between signal transduction pathways and protein degradation machinery inside the cell and sets stage for gaining further insights into regulation of protein degradation.
Resumo:
The Edge Function method formerly developed by Quinlan(25) is applied to solve the problem of thin elastic plates resting on spring supported foundations subjected to lateral loads the method can be applied to plates of any convex polygonal shapes, however, since most plates are rectangular in shape, this specific class is investigated in this thesis. The method discussed can also be applied easily to other kinds of foundation models (e.g. springs connected to each other by a membrane) as long as the resulting differential equation is linear. In chapter VII, solution of a specific problem is compared with a known solution from literature. In chapter VIII, further comparisons are given. The problems of concentrated load on an edge and later on a corner of a plate as long as they are far away from other boundaries are also given in the chapter and generalized to other loading intensities and/or plates springs constants for Poisson's ratio equal to 0.2
Resumo:
A new approach based on the gated integration technique is proposed for the accurate measurement of the autocorrelation function of speckle intensities scattered from a random phase screen. The Boxcar used for this technique in the acquisition of the speckle intensity data integrates the photoelectric signal during its sampling gate open, and it repeats the sampling by a preset number, in. The average analog of the in samplings output by the Boxcar enhances the signal-to-noise ratio by root m, because the repeated sampling and the average make the useful speckle signals stable, while the randomly varied photoelectric noise is suppressed by 1/ root m. In the experiment, we use an analog-to-digital converter module to synchronize all the actions such as the stepped movement of the phase screen, the repeated sampling, the readout of the averaged output of the Boxcar, etc. The experimental results show that speckle signals are better recovered from contaminated signals, and the autocorrelation function with the secondary maximum is obtained, indicating that the accuracy of the measurement of the autocorrelation function is greatly improved by the gated integration technique. (C) 2006 Elsevier Ltd. All rights reserved.
Resumo:
23 p.
Resumo:
Understanding how transcriptional regulatory sequence maps to regulatory function remains a difficult problem in regulatory biology. Given a particular DNA sequence for a bacterial promoter region, we would like to be able to say which transcription factors bind there, how strongly they bind, and whether they interact with each other and/or RNA polymerase, with the ultimate objective of integrating knowledge of these parameters into a prediction of gene expression levels. The theoretical framework of statistical thermodynamics provides a useful framework for doing so, enabling us to predict how gene expression levels depend on transcription factor binding energies and concentrations. We used thermodynamic models, coupled with models of the sequence-dependent binding energies of transcription factors and RNAP, to construct a genotype to phenotype map for the level of repression exhibited by the lac promoter, and tested it experimentally using a set of promoter variants from E. coli strains isolated from different natural environments. For this work, we sought to ``reverse engineer'' naturally occurring promoter sequences to understand how variations in promoter sequence affects gene expression. The natural inverse of this approach is to ``forward engineer'' promoter sequences to obtain targeted levels of gene expression. We used a high precision model of RNAP-DNA sequence dependent binding energy, coupled with a thermodynamic model relating binding energy to gene expression, to predictively design and verify a suite of synthetic E. coli promoters whose expression varied over nearly three orders of magnitude.
However, although thermodynamic models enable predictions of mean levels of gene expression, it has become evident that cell-to-cell variability or ``noise'' in gene expression can also play a biologically important role. In order to address this aspect of gene regulation, we developed models based on the chemical master equation framework and used them to explore the noise properties of a number of common E. coli regulatory motifs; these properties included the dependence of the noise on parameters such as transcription factor binding strength and copy number. We then performed experiments in which these parameters were systematically varied and measured the level of variability using mRNA FISH. The results showed a clear dependence of the noise on these parameters, in accord with model predictions.
Finally, one shortcoming of the preceding modeling frameworks is that their applicability is largely limited to systems that are already well-characterized, such as the lac promoter. Motivated by this fact, we used a high throughput promoter mutagenesis assay called Sort-Seq to explore the completely uncharacterized transcriptional regulatory DNA of the E. coli mechanosensitive channel of large conductance (MscL). We identified several candidate transcription factor binding sites, and work is continuing to identify the associated proteins.
Resumo:
The spin dependent cross sections, σT1/2 and σT3/2 , and asymmetries, A∥ and A⊥ for 3He have been measured at the Jefferson Lab's Hall A facility. The inclusive scattering process 3He(e,e)X was performed for initial beam energies ranging from 0.86 to 5.1 GeV, at a scattering angle of 15.5°. Data includes measurements from the quasielastic peak, resonance region, and the deep inelastic regime. An approximation for the extended Gerasimov-Drell-Hearn integral is presented at a 4-momentum transfer Q2 of 0.2-1.0 GeV2.
Also presented are results on the performance of the polarized 3He target. Polarization of 3He was achieved by the process of spin-exchange collisions with optically pumped rubidium vapor. The 3He polarization was monitored using the NMR technique of adiabatic fast passage (AFP). The average target polarization was approximately 35% and was determined to have a systematic uncertainty of roughly ±4% relative.
Resumo:
The epoch of reionization remains one of the last uncharted eras of cosmic history, yet this time is of crucial importance, encompassing the formation of both the first galaxies and the first metals in the universe. In this thesis, I present four related projects that both characterize the abundance and properties of these first galaxies and uses follow-up observations of these galaxies to achieve one of the first observations of the neutral fraction of the intergalactic medium during the heart of the reionization era.
First, we present the results of a spectroscopic survey using the Keck telescopes targeting 6.3 < z < 8.8 star-forming galaxies. We secured observations of 19 candidates, initially selected by applying the Lyman break technique to infrared imaging data from the Wide Field Camera 3 (WFC3) onboard the Hubble Space Telescope (HST). This survey builds upon earlier work from Stark et al. (2010, 2011), which showed that star-forming galaxies at 3 < z < 6, when the universe was highly ionized, displayed a significant increase in strong Lyman alpha emission with redshift. Our work uses the LRIS and NIRSPEC instruments to search for Lyman alpha emission in candidates at a greater redshift in the observed near-infrared, in order to discern if this evolution continues, or is quenched by an increase in the neutral fraction of the intergalactic medium. Our spectroscopic observations typically reach a 5-sigma limiting sensitivity of < 50 AA. Despite expecting to detect Lyman alpha at 5-sigma in 7-8 galaxies based on our Monte Carlo simulations, we only achieve secure detections in two of 19 sources. Combining these results with a similar sample of 7 galaxies from Fontana et al. (2010), we determine that these few detections would only occur in < 1% of simulations if the intrinsic distribution was the same as that at z ~ 6. We consider other explanations for this decline, but find the most convincing explanation to be an increase in the neutral fraction of the intergalactic medium. Using theoretical models, we infer a neutral fraction of X_HI ~ 0.44 at z = 7.
Second, we characterize the abundance of star-forming galaxies at z > 6.5 again using WFC3 onboard the HST. This project conducted a detailed search for candidates both in the Hubble Ultra Deep Field as well as a number of additional wider Hubble Space Telescope surveys to construct luminosity functions at both z ~ 7 and 8, reaching 0.65 and 0.25 mag fainter than any previous surveys, respectively. With this increased depth, we achieve some of the most robust constraints on the Schechter function faint end slopes at these redshifts, finding very steep values of alpha_{z~7} = -1.87 +/- 0.18 and alpha_{z~8} = -1.94 +/- 0.23. We discuss these results in the context of cosmic reionization, and show that given reasonable assumptions about the ionizing spectra and escape fraction of ionizing photons, only half the photons needed to maintain reionization are provided by currently observable galaxies at z ~ 7-8. We show that an extension of the luminosity function down to M_{UV} = -13.0, coupled with a low level of star-formation out to higher redshift, can fit all available constraints on the ionization history of the universe.
Third, we investigate the strength of nebular emission in 3 < z < 5 star-forming galaxies. We begin by using the Infrared Array Camera (IRAC) onboard the Spitzer Space Telescope to investigate the strength of H alpha emission in a sample of 3.8 < z < 5.0 spectroscopically confirmed galaxies. We then conduct near-infrared observations of star-forming galaxies at 3 < z < 3.8 to investigate the strength of the [OIII] 4959/5007 and H beta emission lines from the ground using MOSFIRE. In both cases, we uncover near-ubiquitous strong nebular emission, and find excellent agreement between the fluxes derived using the separate methods. For a subset of 9 objects in our MOSFIRE sample that have secure Spitzer IRAC detections, we compare the emission line flux derived from the excess in the K_s band photometry to that derived from direct spectroscopy and find 7 to agree within a factor of 1.6, with only one catastrophic outlier. Finally, for a different subset for which we also have DEIMOS rest-UV spectroscopy, we compare the relative velocities of Lyman alpha and the rest-optical nebular lines which should trace the cites of star-formation. We find a median velocity offset of only v_{Ly alpha} = 149 km/s, significantly less than the 400 km/s observed for star-forming galaxies with weaker Lyman alpha emission at z = 2-3 (Steidel et al. 2010), and show that this decrease can be explained by a decrease in the neutral hydrogen column density covering the galaxy. We discuss how this will imply a lower neutral fraction for a given observed extinction of Lyman alpha when its visibility is used to probe the ionization state of the intergalactic medium.
Finally, we utilize the recent CANDELS wide-field, infra-red photometry over the GOODS-N and S fields to re-analyze the use of Lyman alpha emission to evaluate the neutrality of the intergalactic medium. With this new data, we derive accurate ultraviolet spectral slopes for a sample of 468 3 < z < 6 star-forming galaxies, already observed in the rest-UV with the Keck spectroscopic survey (Stark et al. 2010). We use a Bayesian fitting method which accurately accounts for contamination and obscuration by skylines to derive a relationship between the UV-slope of a galaxy and its intrinsic Lyman alpha equivalent width probability distribution. We then apply this data to spectroscopic surveys during the reionization era, including our own, to accurately interpret the drop in observed Lyman alpha emission. From our most recent such MOSFIRE survey, we also present evidence for the most distant galaxy confirmed through emission line spectroscopy at z = 7.62, as well as a first detection of the CIII]1907/1909 doublet at z > 7.
We conclude the thesis by exploring future prospects and summarizing the results of Robertson et al. (2013). This work synthesizes many of the measurements in this thesis, along with external constraints, to create a model of reionization that fits nearly all available constraints.