864 resultados para foundations of mathematics


Relevância:

90.00% 90.00%

Publicador:

Resumo:

We investigate infinite families of integral quadratic polynomials {fk (X)} k∈N and show that, for a fixed k ∈ N and arbitrary X ∈ N, the period length of the simple continued fraction expansion of √fk (X) is constant. Furthermore, we show that the period lengths of √fk (X) go to infinity with k. For each member of the families involved, we show how to determine, in an easy fashion, the fundamental unit of the underlying quadratic field. We also demonstrate how the simple continued fraction ex- pansion of √fk (X) is related to that of √C, where √fk (X) = ak*X^2 +bk*X + C. This continues work in [1]–[4].

Relevância:

90.00% 90.00%

Publicador:

Resumo:

* The authors thank the “Swiss National Science Foundation” for its support.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

∗ Research partially supported by INTAS grant 97-1644

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Let a1 , . . . , ar, be positive integers, i=1 ... r, m = ∑(ai − 1) + 1 and p = max{a1 , . . . , ar }. For a graph G the symbol G → (a1 , . . . , ar ) means that in every r-coloring of the vertices of G there exists a monochromatic ai -clique of color i for some i ∈ {1, . . . , r}. In this paper we consider the vertex Folkman numbers F (a1 , . . . , ar ; m − 1) = min |V (G)| : G → (a1 , . . . , ar ) and Km−1 ⊂ G} We prove that F (a1 , . . . , ar ; m − 1) = m + 6, if p = 3 and m ≧ 6 (Theorem 3) and F (a1 , . . . , ar ; m − 1) = m + 7, if p = 4 and m ≧ 6 (Theorem 4).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

* Partially supported by CNPq (Brazil)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The theorem of Czerniakiewicz and Makar-Limanov, that all the automorphisms of a free algebra of rank two are tame is proved here by showing that the group of these automorphisms is the free product of two groups (amalgamating their intersection), the group of all affine automorphisms and the group of all triangular automorphisms. The method consists in finding a bipolar structure. As a consequence every finite subgroup of automorphisms (in characteristic zero) is shown to be conjugate to a group of linear automorphisms.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Our primary goal in this preamble is to highlight the best of Vasil Popov’s mathematical achievements and ideas. V. Popov showed his extraordinary talent for mathematics in his early papers in the (typically Bulgarian) area of approximation in the Hausdorff metric. His results in this area are very well presented in the monograph of his advisor Bl. Sendov, “Hausdorff Approximation”.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Bibliography of the research publications of Vasil Atanasov Popov

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper we survey work on and around the following conjecture, which was first stated about 45 years ago: If all the zeros of an algebraic polynomial p (of degree n ≥ 2) lie in a disk with radius r, then, for each zero z1 of p, the disk with center z1 and radius r contains at least one zero of the derivative p′ . Until now, this conjecture has been proved for n ≤ 8 only. We also put the conjecture in a more general framework involving higher order derivatives and sets defined by the zeros of the polynomials.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

* The author was supported by NSF Grant No. DMS 9706883.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

∗ Research supported by Hungarian National Foundation for Scientific Research, Grant No T 016094.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Let a compact Hausdorff space X contain a non-empty perfect subset. If α < β and β is a countable ordinal, then the Banach space Bα (X) of all bounded real-valued functions of Baire class α on X is a proper subspace of the Banach space Bβ (X). In this paper it is shown that: 1. Bα (X) has a representation as C(bα X), where bα X is a compactification of the space P X – the underlying set of X in the Baire topology generated by the Gδ -sets in X. 2. If 1 ≤ α < β ≤ Ω, where Ω is the first uncountable ordinal number, then Bα (X) is uncomplemented as a closed subspace of Bβ (X). These assertions for X = [0, 1] were proved by W. G. Bade [4] and in the case when X contains an uncountable compact metrizable space – by F.K.Dashiell [9]. Our argumentation is one non-metrizable modification of both Bade’s and Dashiell’s methods.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

It is shown that the construct of supertopological spaces and continuous maps is topological.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

∗ The first and third author were partially supported by National Fund for Scientific Research at the Bulgarian Ministry of Science and Education under grant MM-701/97.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In memory of Professor D. Doitchinov ∗ This paper was written while the first author was supported by the Swiss National Science Foundation under grants 21–30585.91 and 2000-041745.94/1 and by the Spanish Ministry of Education and Sciences under DGES grant SAB94-0120. The second author was supported under DGES grant PB95-0737. During her stay at the University of Berne the third author was supported by the first author’s grant 2000-041745.94/1 from the Swiss National Science Foundation.