878 resultados para formation process


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The reconstruction of large bone defects after injury or tumor resection often requires the use of bone substitution. Artificial scaffolds based on synthetic biomaterials can overcome disadvantages of autologous bone grafts, like limited availability and donor side morbidity. Among them, scaffolds based on nanofibers offer great advantages. They mimic the extracellular matrix, can be used as a carrier for growth factors and allow the differentiation of human mesenchymal stem cells. Differentiation is triggered by a series of signaling processes, including integrin and bone morphogenetic protein (BMP), which act in a cooperative manner. The aim of this study was to analyze whether these processes can be remodeled in artificial poly-(l)-lactide acid (PLLA) based nanofiber scaffolds in vivo. Electrospun matrices composed of PLLA-collagen type I or BMP-2 incorporated PLLA-collagen type I were implanted in calvarial critical size defects in rats. Cranial CT-scans were taken 4, 8 and 12 weeks after implantation. Specimens obtained after euthanasia were processed for histology and immunostainings on osteocalcin, BMP-2 and Smad5. After implantation the scaffolds were inhomogeneously colonized and cells were only present in wrinkle- or channel-like structures. Ossification was detected only in focal areas of the scaffold. This was independent of whether BMP-2 was incorporated in the scaffold. However, cells that migrated into the scaffold showed an increased ratio of osteocalcin and Smad5 positive cells compared to empty defects. Furthermore, in case of BMP-2 incorporated PLLA-collagen type I scaffolds, 4 weeks after implantation approximately 40 % of the cells stained positive for BMP-2 indicating an autocrine process of the ingrown cells. These findings indicate that a cooperative effect between BMP-2 and collagen type I can be transferred to PLLA nanofibers and furthermore, that this effect is active in vivo. However, this had no effect on bone formation. The reason for this seems to be an unbalanced colonization of the scaffolds with cells, due to insufficient pore size.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conventional liquid liquid extraction (LLE) methods require large volumes of fluids to achieve the desired mass transfer of a solute, which is unsuitable for systems dealing with a low volume or high value product. An alternative to these methods is to scale down the process. Millifluidic devices share many of the benefits of microfluidic systems, including low fluid volumes, increased interfacial area-to-volume ratio, and predictability. A robust millifluidic device was created from acrylic, glass, and aluminum. The channel is lined with a hydrogel cured in the bottom half of the device channel. This hydrogel stabilizes co-current laminar flow of immiscible organic and aqueous phases. Mass transfer of the solute occurs across the interface of these contacting phases. Using a y-junction, an aqueous emulsion is created in an organic phase. The emulsion travels through a length of tubing and then enters the co-current laminar flow device, where the emulsion is broken and each phase can be collected separately. The inclusion of this emulsion formation and separation increases the contact area between the organic and aqueous phases, therefore increasing the area over which mass transfer can occur. Using this design, 95% extraction efficiency was obtained, where 100% is represented by equilibrium. By continuing to explore this LLE process, the process can be optimized and with better understanding may be more accurately modeled. This system has the potential to scale up to the industrial level and provide the efficient extraction required with low fluid volumes and a well-behaved system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Brain edema is the main cause of death from brain infarction. The polarized expression of the water channel protein aquaporin-4 (AQP4) on astroglial endfeet surrounding brain microvessels suggests a role in brain water balance. Loss of astrocyte foot process anchoring to the basement membrane (BM) accompanied by the loss of polarized localization of AQP4 to astrocytic endfeet has been shown to be associated with vasogenic/extracellular edema in neuroinflammation. Here, we asked if loss of astrocyte polarity is also observed in cytotoxic/intracellular edema following focal brain ischemia after transient middle cerebral artery occlusion (tMCAO). Upon mild focal brain ischemia, we observed diminished immunostaining for the BM components laminin α4, laminin α2, and the proteoglycan agrin, in the core of the lesion, but not in BMs in the surrounding penumbra. Staining for the astrocyte endfoot anchorage protein β-dystroglycan (DG) was dramatically reduced in both the lesion core and the penumbra, and AQP4 and Kir4.1 showed a loss of polarized localization to astrocytic endfeet. Interestingly, we observed that mice deficient for agrin expression in the brain lack polarized localization of β-DG and AQP4 at astrocytic endfeet and do not develop early cytotoxic/intracellular edema following tMCAO. Taken together, these data indicate that the binding of DG to agrin embedded in the subjacent BM promotes polarized localization of AQP4 to astrocyte endfeet. Reduced DG protein levels and redistribution of AQP4 as observed upon tMCAO might therefore counteract early edema formation and reflect a beneficial mechanism operating in the brain to minimize damage upon ischemia.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lorazepam (LOR) is a 3-hydroxy-1,4-benzodiazepine that is chiral and undergoes enantiomerization at room temperature. In humans, about 75% of the administered dose of LOR is excreted in the urine as its 30-glucuronide. CE-MS with negative ESI was used to confirm the presence of LOR-30-glucuronide in urines that stemmed from a healthy individual who ingested 1 or 2 mg LOR, whereas free LOR could be detected in extracts prepared from enzymatically hydrolyzed urines. As the 30-glucuronidation reaction occurs at the chiral center of the molecule, two diastereoisomers can theoretically be formed, molecules that can no longer interconvert. The stereoselective formation of LOR glucuronides in humans and in vitro was investigated. MEKC analysis of extracts of the nonhydrolyzed urines suggested the presence of the two different LOR glucuronides in the urine. The formation of the same two diastereoisomers was also observed in vitro employing incubations of LOR with human liver microsomes in the presence of uridine 5'-diphospho-glucuronic acid as coenzyme. The absence of other coenzymes excluded the formation of phase I or other phase II metabolites of LOR. Both results revealed a stereoselectivity, one diastereoisomer being formed in a higher amount than the other. After enzymatic hydrolysis using beta-glucuronidase, these peaks could not be detected any more. Instead, LOR was monitored. Analysis of the extracts prepared from enzymatically hydrolyzed urines by MEKC in the presence of 2-hydroxypropyl-beta-CD revealed the enantiomerization process of LOR (observation of two peaks of equal magnitude connected with a plateau zone). The data presented provide for the first time the evidence of the stereoselectivity of the LOR glucuronidation in humans.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Fas (CD95/Apo-1) ligand (FasL)-induced apoptosis in Fas-bearing cells is critically involved in modulating immune reactions and tissue repair. Apoptosis has also been described after mechanical vascular injury such as percutaneous coronary intervention. However, the relevance of cell death in this context of vascular repair remains unknown. METHODS AND RESULTS: To determine whether FasL-induced apoptosis is causally related to neointimal lesion formation, we subjected FasL-deficient (generalized lymphoproliferative disorder [gld], C57BL/6J) and corresponding wild-type (WT) mice to carotid balloon distension injury, which induces marked endothelial denudation and medial cell death. FasL expression in WT mice was induced in injured vessels compared with untreated arteries (P<0.05; n=5). Conversely, absence of functional FasL in gld mice decreased medial and intimal apoptosis (terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling [TUNEL] index) at 1 hour and 7 days after balloon injury (P<0.05; n=6). In addition, peritoneal macrophages isolated from gld mice showed no apoptosis and enhanced migration (P<0.05; n=4). In parallel, we observed increased balloon-induced macrophage infiltrations (anti-CD68) in injured arteries of FasL-deficient animals (P<0.05; n=6). Together with enhanced proliferation (bromodeoxyuridine index; P<0.05), these events resulted in a further increase in medial and neointimal cells (P<0.01; n=8) with thickened neointima in gld mice (intima/media ratio, x3.8 of WT; P<0.01). CONCLUSIONS: Our data identify proapoptotic and antiinflammatory effects of endogenous FasL as important factors in the process of neointimal lesion formation after balloon injury. Moreover, they suggest that activation of FasL may decrease neointimal thickening after percutaneous coronary intervention.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The human lung is born with a fraction of the adult complement of alveoli. The postnatal stages of human lung development comprise an alveolar stage, a stage of microvascular maturation, and very likely a stage of late alveolarization. The characteristic structural features of the alveolar stage are well known; they are very alike in human and rat lungs. The bases for alveolar formation are represented by immature inter-airspace walls with two capillary layers with a central sheet of connective tissue. Interalveolar septa are formed by folding up of one of the two capillary layers. In the alveolar stage, alveolar formation occurs rapidly and is typically very conspicuous in both species; it has therefore been termed 'bulk alveolarization'. During and after alveolarization the septa with double capillary networks are restructured to the mature form with a single network. This happens in the stage of microvascular maturation. After these steps the lung proceeds to a phase of growth during which capillary growth by intussusception plays an important role in supporting gas exchange. In view of reports that alveoli are added after the stage of microvascular maturation, the question arises whether the present concept of alveolar formation needs revision. On the basis of morphological and experimental findings we can state that mature lungs contain all the features needed for 'late alveolarization' by the classical septation process. Because of the high plasticity of the lung tissues, late alveolarization or some forms of compensatory alveolar formation may be considered for the human lung.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVES: Bone formation during guided tissue regeneration is a tightly regulated process involving cells, extracellular matrix and growth factors. The aims of this study were (i) to examine the expression of cyclooxygenase-2 (COX-2) during bone regeneration and (ii) the effects of selective COX-2 inhibition on osseous regeneration and growth factor expression in the rodent femur model. MATERIAL AND METHODS: A standardized transcortical defect of 5 x 1.5 mm was prepared in the femur of 12 male rats and a closed half-cylindrical titanium chamber was placed over the defect. The expression of COX-2 and of platelet-derived growth factor-B (PDGF-B), bone morphogenetic protein-6 (BMP-6) and insulin-like growth factor-I/II (IGF-I/II) was analyzed at Days 3, 7, 21 and 28 semiquantitatively by reverse transcriptase-polymerase chain reaction and immunohistochemistry. The effects of COX-2 inhibition by intraperitoneal injection of NS-398 (3 mg/kg/day) were analyzed in five additional animals sacrificed at Day 14. RESULTS: Histomorphometry revealed that new bone formation occurred in the cortical defect area as well as in the supracortical region, i.e. region within the chamber by Day 7 and increased through Day 28. Immunohistochemical evidence of COX-2 and PDGF-B levels were observed early (i.e. Day 3) and decreased rapidly by Day 7. BMP-6 expression was maximal at Day 3 and slowly declined by Day 28. In contrast, IGF-I/II expression gradually increased during the 28-day period. Systemic administration NS-398 caused a statistically significant reduction (P<0.05) in new bone formation (25-30%) and was associated with a statistically significant reduction in BMP-6 protein and mRNA expression (50% and 65% at P<0.05 and P<0.01, respectively). PDGF-B mRNA or protein expression was not affected by NS-398 treatment. CONCLUSION: COX-2 inhibition resulted in reduced BMP-6 expression and impaired osseous regeneration suggesting an important role for COX-2-induced signaling in BMP synthesis and new bone formation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND AND OBJECTIVES: There are no widely accepted criteria for the definition of hematopoietic stem cell transplant -associated microangiopathy (TAM). An International Working Group was formed to develop a consensus formulation of criteria for diagnosing clinically significant TAM. DESIGN AND METHODS: The participants proposed a list of candidate criteria, selected those considered necessary, and ranked those considered optional to identify a core set of criteria. Three obligatory criteria and four optional criteria that ranked highest formed a core set. In an appropriateness panel process, the participants scored the diagnosis of 16 patient profiles as appropriate or not appropriate for TAM. Using the experts' ratings on the patient profiles as a gold standard, the sensitivity and specificity of 24 candidate definitions of the disorder developed from the core set of criteria were evaluated. A nominal group technique was used to facilitate consensus formation. The definition of TAM with the highest score formed the final PROPOSAL. RESULTS: The Working Group proposes that the diagnosis of TAM requires fulfilment of all of the following criteria: (i) >4% schistocytes in blood; (ii) de novo, prolonged or progressive thrombocytopenia (platelet count <50 x 109/L or 50% or greater reduction from previous counts); (iii) sudden and persistent increase in lactate dehydrogenase concentration; (iv) decrease in hemoglobin concentration or increased transfusion requirement; and (v) decrease in serum haptoglobin. The sensitivity and specificity of this definition exceed 80%. INTERPRETATION AND CONCLUSIONS: The Working Group recommends that the presented criteria of TAM be adopted in clinical use, especially in scientific trials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Renal sodium retention in experimental liver cirrhosis originates from the distal nephron sensitive to aldosterone. The aims of this study were to (1) determine the exact site of sodium retention along the aldosterone-sensitive distal nephron, and (2) to evaluate the role of aldosterone and mineralocorticoid receptor activation in this process. Liver cirrhosis was induced by bile duct ligation in either adrenal-intact or corticosteroid-clamped mice. Corticosteroid-clamp was achieved through adrenalectomy and corticosteroid supplementation with aldosterone and dexamethasone via osmotic minipumps. 24-hours renal sodium balance was evaluated in metabolic cages. Activity and expression of sodium- and potassium-dependent adenosine triphosphatase were determined in microdissected segments of nephron. Within 4-5 weeks, cirrhosis induced sodium retention in adrenal-intact mice and formation of ascites in 50% of mice. At that time, sodium- and potassium-dependent adenosine triphosphatase activity increased specifically in cortical collecting ducts. Hyperaldosteronemia was indicated by increases in urinary aldosterone excretion and in sgk1 (serum- and glucocorticoid-regulated kinase 1) mRNA expression in collecting ducts. Corticosteroid-clamp prevented induction of sgk1 but not cirrhosis-induced sodium retention, formation of ascites and stimulation of sodium- and potassium-dependent adenosine triphosphatase activity and expression (mRNA and protein) in collecting duct. These findings demonstrate that sodium retention in cirrhosis is independent of hyperaldosteronemia and of the activation of mineralocorticoid receptor. CONCLUSION: Bile duct ligation in mice induces cirrhosis which, within 4-5 weeks, leads to the induction of sodium- and potassium-dependent adenosine triphosphatase in cortical collecting ducts, to renal sodium retention and to the formation of ascites. Sodium retention, ascites formation and induction of sodium- and potassium-dependent adenosine triphosphatase are independent of the activation of mineralocorticoid receptors by either aldosterone or glucocorticoids.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thermal stability of nanograined metals can be difficult to attain due to the large driving force for grain growth that arises from the significant boundary area constituted by the nanostructure. Kinetic approaches for stabilization of the nanostructure effective at low homologous temperatures often fail at higher homologous temperatures. Thermodynamic approaches for thermal stabilization may offer higher temperature stability. In this research, modest alloying of aluminum with solute (1 at.% Sc, Yb, or Sr) was examined as a means to thermodynamically stabilize a bulk nanostructure at elevated temperatures. After using melt-spinning and ball-milling to create an extended solid-solution and nanostructure with average grain size on the order of 30-45 nm, 1 h annealing treatments at 673 K (0.72 Tm) , 773 K (0.83 Tm) , and 873 K (0.94 Tm) were applied. The alloys remain nanocrystalline (<100 nm) as measured by Warren-Averbach Fourier analysis of x-ray diffraction peaks and direct observation of TEM dark field micrographs, with the efficacy of stabilization: Sr>Yb>Sc. Disappearance of intermetallic phases in the Sr and Yb alloys in the x-ray diffraction spectra are observed to occur coincident with the stabilization after annealing, suggesting that precipitates dissolve and the boundaries are enriched with solute. Melt-spinning has also been shown to be an effective process to produce a class of ordered, but non-periodic crystals called quasicrystals. However, many of the factors related to the creation of the quasicrystals through melt-spinning are not optimized for specific chemistries and alloy systems. In a related but separate aspect of this research, meltspinning was utilized to create metastable quasicrystalline Al6Mn in an α-Al matrix through rapid solidification of Al-8Mn (by mol) and Al-10Mn (by mol) alloys. Wheel speed of the melt-spinning wheel and orifice diameter of the tube reservoir were varied to determine their effect on the resulting volume proportions of the resultant phases using integrated areas of collected x-ray diffraction spectra. The data were then used to extrapolate parameters for the Al-10Mn alloy which consistently produced Al6Mn quasicrystal with almost complete suppression of the equilibrium Al6Mn orthorhombic phase.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work presents a 1-D process scale model used to investigate the chemical dynamics and temporal variability of nitrogen oxides (NOx) and ozone (O3) within and above snowpack at Summit, Greenland for March-May 2009 and estimates surface exchange of NOx between the snowpack and surface layer in April-May 2009. The model assumes the surface of snowflakes have a Liquid Like Layer (LLL) where aqueous chemistry occurs and interacts with the interstitial air of the snowpack. Model parameters and initialization are physically and chemically representative of snowpack at Summit, Greenland and model results are compared to measurements of NOx and O3 collected by our group at Summit, Greenland from 2008-2010. The model paired with measurements confirmed the main hypothesis in literature that photolysis of nitrate on the surface of snowflakes is responsible for nitrogen dioxide (NO2) production in the top ~50 cm of the snowpack at solar noon for March – May time periods in 2009. Nighttime peaks of NO2 in the snowpack for April and May were reproduced with aqueous formation of peroxynitric acid (HNO4) in the top ~50 cm of the snowpack with subsequent mass transfer to the gas phase, decomposition to form NO2 at nighttime, and transportation of the NO2 to depths of 2 meters. Modeled production of HNO4 was hindered in March 2009 due to the low production of its precursor, hydroperoxy radical, resulting in underestimation of nighttime NO2 in the snowpack for March 2009. The aqueous reaction of O3 with formic acid was the major sync of O3 in the snowpack for March-May, 2009. Nitrogen monoxide (NO) production in the top ~50 cm of the snowpack is related to the photolysis of NO2, which underrepresents NO in May of 2009. Modeled surface exchange of NOx in April and May are on the order of 1011 molecules m-2 s-1. Removal of measured downward fluxes of NO and NO2 in measured fluxes resulted in agreement between measured NOx fluxes and modeled surface exchange in April and an order of magnitude deviation in May. Modeled transport of NOx above the snowpack in May shows an order of magnitude increase of NOx fluxes in the first 50 cm of the snowpack and is attributed to the production of NO2 during the day from the thermal decomposition and photolysis of peroxynitric acid with minor contributions of NO from HONO photolysis in the early morning.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND/AIMS: Angiogenesis is a pathological hallmark of portal hypertension. Although VEGF is considered to be the most important proangiogenic factor in neoangiogenesis, this process requires the coordinated action of a variety of factors. Identification of novel molecules involved in angiogenesis is highly relevant, since they may represent potential new targets to suppress pathological neovascularization in angiogenesis-related diseases like portal hypertension. The apelin/APJ signaling pathway plays a crucial role in angiogenesis. Therefore, we determined whether the apelin system modulates angiogenesis-driven processes in portal hypertension. METHODS: Partial portal vein-ligated rats were treated with the APJ antagonist F13A for seven days. Splanchnic neovascularization and expression of angiogenesis mediators (Western blotting) was determined. Portosystemic collateral formation (microspheres), and hemodynamic parameters (flowmetry) were also assessed. RESULTS: Apelin and its receptor APJ were overexpressed in the splanchnic vasculature of portal hypertensive rats. F13A effectively decreased, by 52%, splanchnic neovascularization and expression of proangiogenic factors VEGF, PDGF and angiopoietin-2 in portal hypertensive rats. F13A also reduced, by 35%, the formation of portosystemic collateral vessels. CONCLUSIONS: This study provides the first experimental evidence showing that the apelin/APJ system contributes to portosystemic collateralization and splanchnic neovascularization in portal hypertensive rats, presenting a potential novel therapeutic target for portal hypertension.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Palatogenesis is a complex process implying growth, elevation and fusion of the two lateral palatal shelves during embryogenesis. This process is tightly controlled by genetic and mechanistic cues that also coordinate the growth of other orofacial structures. Failure at any of these steps can result in cleft palate, which is a frequent craniofacial malformation in humans. To understand the etiology of cleft palate linked to the BMP signaling pathway, we studied palatogenesis in Bmp7-deficient mouse embryos. Bmp7 expression was found in several orofacial structures including the edges of the palatal shelves prior and during their fusion. Bmp7 deletion resulted in a general alteration of oral cavity morphology, unpaired palatal shelf elevation, delayed shelf approximation, and subsequent lack of fusion. Cell proliferation and expression of specific genes involved in palatogenesis were not altered in Bmp7-deficient embryos. Conditional ablation of Bmp7 with Keratin14-Cre or Wnt1-Cre revealed that neither epithelial nor neural crest-specific loss of Bmp7 alone could recapitulate the cleft palate phenotype. Palatal shelves from mutant embryos were able to fuse when cultured in vitro as isolated shelves in proximity, but not when cultured as whole upper jaw explants. Thus, deformations in the oral cavity of Bmp7-deficient embryos such as the shorter and wider mandible were not solely responsible for cleft palate formation. These findings indicate a requirement for Bmp7 for the coordination of both developmental and mechanistic aspects of palatogenesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Intussusceptive angiogenesis is a novel mode of blood vessel formation and remodeling, which occurs by internal division of the preexisting capillary plexus without sprouting. In this study, the process is demonstrated in developing chicken eye vasculature and in the chorioallantoic membrane by methylmethacrylate (Mercox) casting, transmission electron microscopy, and in vivo observation. In a first step of intussusceptive angiogenesis, the capillary plexus expands by insertion of numerous transcapillary tissue pillars, ie, by intussusceptive microvascular growth. In a subsequent step, a vascular tree arises from the primitive capillary plexus as a result of intussusceptive pillar formation and pillar fusions, a process we termed "intussusceptive arborization." On the basis of the morphological observations, a 4-step model for intussusceptive arborization is proposed, as follows: phase I, numerous circular pillars are formed in rows, thus demarcating future vessels; phase II, formation of narrow tissue septa by pillar reshaping and pillar fusions; phase III, delineation, segregation, growth, and extraction of the new vascular entity by merging of septa; and phase IV, formation of new branching generations by successively repeating the process, complemented by growth and maturation of all components. In contrast to sprouting, intussusceptive angiogenesis does not require intense local endothelial cell proliferation; it is implemented primarily by rearrangement and attenuation of the endothelial cell plates. In summary, transcapillary pillar formation, ie, intussusception, is a central and probably widespread process, which plays a role not only in capillary network growth and expansion (intussusceptive microvascular growth), but also in vascular plexus remodeling and tree formation (intussusceptive arborization).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Novel leads are urgently required for designing antimalarials due to the reduced efficacy of presently available drugs. The malaria parasite has a unique reaction of heme polymerization, which has attracted much attention in the recent past as a target for the design of antimalarial drugs. The process is hampered by non-availability of a proper assay method. Currently available methods are cumbersome and require advanced instrumentation or radioactive substrates. Here, we are describing an assay for hemozoin formation that is simple and reproducible. This assay has routinely been used by us for the identification of potential compounds with antimalarial activity.