909 resultados para flow-based


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Current Physiologically based pharmacokinetic (PBPK) models are inductive. We present an additional, different approach that is based on the synthetic rather than the inductive approach to modeling and simulation. It relies on object-oriented programming A model of the referent system in its experimental context is synthesized by assembling objects that represent components such as molecules, cells, aspects of tissue architecture, catheters, etc. The single pass perfused rat liver has been well described in evaluating hepatic drug pharmacokinetics (PK) and is the system on which we focus. In silico experiments begin with administration of objects representing actual compounds. Data are collected in a manner analogous to that in the referent PK experiments. The synthetic modeling method allows for recognition and representation of discrete event and discrete time processes, as well as heterogeneity in organization, function, and spatial effects. An application is developed for sucrose and antipyrine, administered separately and together PBPK modeling has made extensive progress in characterizing abstracted PK properties but this has also been its limitation. Now, other important questions and possible extensions emerge. How are these PK properties and the observed behaviors generated? The inherent heuristic limitations of traditional models have hindered getting meaningful, detailed answers to such questions. Synthetic models of the type described here are specifically intended to help answer such questions. Analogous to wet-lab experimental models, they retain their applicability even when broken apart into sub-components. Having and applying this new class of models along with traditional PK modeling methods is expected to increase the productivity of pharmaceutical research at all levels that make use of modeling and simulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, a new differential evolution (DE) based power system optimal available transfer capability (ATC) assessment is presented. Power system total transfer capability (TTC) is traditionally solved by the repeated power flow (RPF) method and the continuation power flow (CPF) method. These methods are based on the assumption that the productions of the source area generators are increased in identical proportion to balance the load increment in the sink area. A new approach based on DE algorithm to generate optimal dispatch both in source area generators and sink area loads is proposed in this paper. This new method can compute ATC between two areas with significant improvement in accuracy compared with the traditional RPF and CPF based methods. A case study using a 30 bus system is given to verify the efficiency and effectiveness of this new DE based ATC optimization approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The verification of information flow properties of security devices is difficult because it involves the analysis of schematic diagrams, artwork, embedded software, etc. In addition, a typical security device has many modes, partial information flow, and needs to be fault tolerant. We propose a new approach to the verification of such devices based upon checking abstract information flow properties expressed as graphs. This approach has been implemented in software, and successfully used to find possible paths of information flow through security devices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The work presented in this thesis describes an investigation into the production and properties of thin amorphous C films, with and without Cr doping, as a low wear / friction coating applicable to MEMS and other micro- and nano-engineering applications. Firstly, an assessment was made of the available testing techniques. Secondly, the optimised test methods were applied to a series of sputtered films of thickness 10 - 2000 nm in order to: (i) investigate the effect of thickness on the properties of coatingslcoating process (ii) investigate fundamental tribology at the nano-scale and (iii) provide a starting point for nanotribological coating optimisation at ultra low thickness. The use of XPS was investigated for the determination of Sp3/Sp2 carbon bonding. Under C 1s peak analysis, significant errors were identified and this was attributed to the absence of sufficient instrument resolution to guide the component peak structure (even with a high resolution instrument). A simple peak width analysis and correlation work with C KLL D value confirmed the errors. The use of XPS for Sp3/Sp2 was therefore limited to initial tentative estimations. Nanoindentation was shown to provide consistent hardness and reduced modulus results with depth (to < 7nm) when replicate data was suitably statistically processed. No significant pile-up or cracking of the films was identified under nanoindentation. Nanowear experimentation by multiple nanoscratching provided some useful information, however the conditions of test were very different to those expect for MEMS and micro- / nano-engineering systems. A novel 'sample oscillated nanoindentation' system was developed for testing nanowear under more relevant conditions. The films were produced in an industrial production coating line. In order to maximise the available information and to take account of uncontrolled process variation a statistical design of experiment procedure was used to investigate the effect of four key process control parameters. Cr doping was the most significant control parameter at all thicknesses tested and produced a softening effect and thus increased nanowear. Substrate bias voltage was also a significant parameter and produced hardening and a wear reducing effect at all thicknesses tested. The use of a Cr adhesion layer produced beneficial results at 150 nm thickness, but was ineffective at 50 nm. Argon flow to the coating chamber produced a complex effect. All effects reduced significantly with reducing film thickness. Classic fretting wear was produced at low amplitude under nanowear testing. Reciprocating sliding was produced at higher amplitude which generated three body abrasive wear and this was generally consistent with the Archard model. Specific wear rates were very low (typically 10-16 - 10-18 m3N-1m-1). Wear rates reduced exponentially with reduced film thickness and below (approx.) 20 nm, thickness was identified as the most important control of wear.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two sets of experiments, categorized as TG–FTIR and Py–GC–FTIR, are employed to investigate the mechanism of the hemicellulose pyrolysis and the formation of main gaseous and bio-oil products. The “sharp mass loss stage” and the corresponding evolution of the volatile products are examined by the TG–FTIR graphs at the heating rate of 3–80 K/min. A pyrolysis unit, composed of fluidized bed reactor, carbon filter, vapour condensing system and gas storage, is employed to investigate the products of the hemicellulose pyrolysis under different temperatures (400–690 °C) at the feeding flow rate of 600 l/h. The effects of temperature on the condensable products are examined thoroughly. The possible routes for the formation of the products are systematically proposed from the primary decomposition of the three types of unit (xylan, O-acetylxylan and 4-O-methylglucuronic acid) and the secondary reactions of the fragments. It is found that the formation of CO is enhanced with elevated temperature, while slight change is observed for the yield of CO2 which is the predominant products in the gaseous mixture.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes the implementation of a sensitive, on-chip immunoassay for the analysis of intracellular proteins, developed using microdroplet technology. The system offers a number of analytical functionalities, enabling the lysis of low cell numbers, as well as protein detection and quantification, integrated within a single process flow. Cells were introduced into the device in suspension and were electrically lysed in situ. The cell lysate was subsequently encapsulated together with antibody-functionalized beads into stable, water-in-oil droplets, which were stored on-chip. The binding of intracellular proteins to the beads was monitored fluorescently. By analyzing many individual droplets and quantifying the data obtained against standard additions, we measured the level of two intracellular proteins, namely, HRas-mCitrine, expressed within HEK-293 cells, and actin-EGFP, expressed within MCF-7 cells. We determined the concentrations of these proteins over 5 orders of magnitude, from ~50 pM to 1 µM. The results from this semiautomated method were compared to those for determinations made using Western blots, and were found not only to be faster, but required a smaller number of cells. © 2011 American Chemical Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis describes work carried out to improve the fundamental modelling of liquid flows on distillation trays. A mathematical model is presented based on the principles of computerised fluid dynamics. It models the liquid flow in the horizontal directions allowing for the effects of the vapour through the use of an increased liquid turbulence, modelled by an eddy viscosity, and a resistance to liquid flow caused by the vapour being accelerated horizontally by the liquid. The resultant equations are similar to the Navier-Stokes equations with the addition of a resistance term.A mass-transfer model is used to calculate liquid concentration profiles and tray efficiencies. A heat and mass transfer analogy is used to compare theoretical concentration profiles to experimental water-cooling data obtained from a 2.44 metre diameter air-water distillation simulation rig. The ratios of air to water flow rates are varied in order to simulate three pressures: vacuum, atmospheric pressure and moderate pressure.For simulated atmospheric and moderate pressure distillation, the fluid mechanical model constantly over-predicts tray efficiencies with an accuracy of between +1.7% and +11.3%. This compares to -1.8% to -10.9% for the stagnant regions model (Porter et al. 1972) and +12.8% to +34.7% for the plug flow plus back-mixing model (Gerster et al. 1958). The model fails to predict the flow patterns and tray efficiencies for vacuum simulation due to the change in the mechanism of liquid transport, from a liquid continuous layer to a spray as the liquid flow-rate is reduced. This spray is not taken into account in the development of the fluid mechanical model. A sensitivity analysis carried out has shown that the fluid mechanical model is relatively insensitive to the prediction of the average height of clear liquid, and a reduction in the resistance term results in a slight loss of tray efficiency. But these effects are not great. The model is quite sensitive to the prediction of the eddy viscosity term. Variations can produce up to a 15% decrease in tray efficiency. The fluid mechanical model has been incorporated into a column model so that statistical optimisation techniques can be employed to fit a theoretical column concentration profile to experimental data. Through the use of this work mass-transfer data can be obtained.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The thesis describes experimental work on the possibility of using deflection baffles in conventional distillation trays as flow straightening devices, with the view of enhancing tray efficiency. The mode of operation is based on deflecting part of the liquid momentum from the centre of the tray to the segment regions in order to drive stagnating liquid at the edges forward. The first part of the work was a detailed investigation into the two-phase flow patterns produced on a conventional sieve tray having 1 mm hole size perforations. The data provide a check on some earlier work and extend the range of the existing databank, particularly to conditions more typical of industrial operation. A critical survey of data collected on trays with different hole sizes (Hine, 1990; Chambers, 1993; Fenwick, 1996; this work) showed that the hole diameter has a significant influence on the flow regime, the size of the stagnant regions and the hydraulic and mass transfer performance. Five modified tray topologies were created with different configurations of baffles and tested extensively in the 2.44 m diameter air-water pilot distillation simulator for their efficacy in achieving uniform flow across the tray and for their impact on tray loading capacity and mass transfer efficiency. Special attention was given to the calibration of the over 100 temperature probes used in measuring the water temperature across the tray on which the heat and mass transfer analogy is based. In addition to normal tray capacity experiments, higher weir load experiments were conducted using a 'half-tray' mode in order to extend the range of data to conditions more typical of industrial operation. The modified trays show superior flow characteristics compared to the conventional tray in terms of the ability to replenish the zones of exceptionally low temperatures and high residence times at the edges of the tray, to lower the bulk liquid gradient and to achieve a more uniform flow across the tray. These superior flow abilities, however, tend to diminish with increasing weir load because of the increasing tendency for the liquid to jump over the barriers instead of flowing over them. The modified tray topologies showed no tendency to cause undue limitation to tray loading capacity. Although the improvement in the efficiency of a single tray over that of the conventional tray was moderate and in some cases marginal, the multiplier effect in a multiple tray column situation would be significant (Porter et al., 1972). These results are in good agreement with an associated CFD studies (Fischer, 1999) carried out by partners in the Advanced Studies in Distillation consortium. It is concluded that deflection baffles can be used in a conventional distillation sieve tray to achieve better liquid flow distribution and obtain enhanced mass transfer efficiency, without undermining the tray loading capacity. Unlike any other controlled-flow tray whose mechanical complexity impose stringent manufacturing and installation tolerances, the baffled-tray models are simple to design, manufacture and install and thus provide an economic method of retrofitting badly performing sieve trays both in terms of downtime and fabrication. NOTE APPENDICES 2-5 ARE ON A SEPARATE FLOPPY DISK ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY WITH PRIOR ARRANGEMENT

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The thesis begins with a conceptual model of the way that language diversity affects the strategies, organisation and subsidiary control policies of multinational companies. The model is based solely on the researcher'’ personal experience of working in a variety of international management roles, but in Chapter 2 a wide-ranging review of related academic literature finds evidence to support the key ideas. The model is developed as a series of propositions which are tested in a comparative case study, refined and then re-tested in a global survey of multinational subsidiaries. The principal findings of the empirical phases of the thesis endorse the main tenets of the model: - That language difference between parent and subsidiary will impair communication, create mistrust and impede relationship development. - That subsequently the feelings of uncertainty, suspicion and mistrust will influence the decisions taken by the parent company. - They will have heightened sensitivity to language issues and will implement policies to manage language differences. - They will adopt low-risk strategies in host countries where they are concerned about language difference. - They will use organisational and manpower strategies to minimise the consequences and risks of the communications problems with the subsidiary. - As a consequence the level of integration and knowledge flow between parent and subsidiary will be curtailed. - They will adopt styles of control that depend least on their ability to communicate with their subsidiary. Although there is adequate support for all of the above conclusions, on some key points the evidence of the Case Studies and Survey is contradictory. The thesis, therefore, closes with an agenda for further research that would address these inconsistencies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The flow behaviour of shallow gas-fluidised beds was studied. experimentally using a rotational viscometer, and an inclined open channel. Initially, tests were carried out with the viscometer in order to establish qualitative trends in the flow properties of a variety of materials over a wide range of fluidising conditions. Also, a technique was developed which enabled quantitative viscosity data to be extracted from the experimental results. The flow properties were found to be sensitive to the size, size-range and density of the fluidised material, the type of distributor used, and the moisture content of the fluidising gas. Tests in beds up to 120 mm deep showed that the fluidity of the bed improves with reduction in depth; and indicated a range of flow behaviour from shear-thinning to Newtonian, depending chiefly on fluidising velocity .. Later, an apparatus was built which provided for a steady, continuous flow of fluidised material down an inclined open channel of 3m length x 0.15m square, up to a mass flowrate of 10 kg/s (35 ton/hr). This facility has enabled data to be obtained that is of practical value in industrial applications; which is otherwise difficult in view of the present limited understanding of the true mechanism of fluidised flow. A correlation has been devised, based on analogy with laminar liquid flow, which describes the channel flow behaviour with reasonable accuracy over the whole range of shear-rates used. 1he channeI results indicated that at low fluidiising velocities the flow was adversely affected by settlement of a stagnant layer of particles on to the distributor, which gave rise to increased flow resistance. Conversely, at higher fluidising velocities the resistance at the distributor appeared to be less than at the walls. In view of this, and also because of the disparity in shear-rates between the two types of apparatus, it is not possible as yet to predict exactly the flow behaviour in an open channel from small-scale viscometer tests.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Physically based distributed models of catchment hydrology are likely to be made available as engineering tools in the near future. Although these models are based on theoretically acceptable equations of continuity, there are still limitations in the present modelling strategy. Of interest to this thesis are the current modelling assumptions made concerning the effects of soil spatial variability, including formations producing distinct zones of preferential flow. The thesis contains a review of current physically based modelling strategies and a field based assessment of soil spatial variability. In order to investigate the effects of soil nonuniformity a fully three dimensional model of variability saturated flow in porous media is developed. The model is based on a Galerkin finite element approximation to Richards equation. Accessibility to a vector processor permits numerical solutions on grids containing several thousand node points. The model is applied to a single hillslope segment under various degrees of soil spatial variability. Such variability is introduced by generating random fields of saturated hydraulic conductivity using the turning bands method. Similar experiments are performed under conditions of preferred soil moisture movement. The results show that the influence of soil variability on subsurface flow may be less significant than suggested in the literature, due to the integrating effects of three dimensional flow. Under conditions of widespread infiltration excess runoff, the results indicate a greater significance of soil nonuniformity. The recognition of zones of preferential flow is also shown to be an important factor in accurate rainfall-runoff modelling. Using the results of various fields of soil variability, experiments are carried out to assess the validity of the commonly used concept of `effective parameters'. The results of these experiments suggest that such a concept may be valid in modelling subsurface flow. However, the effective parameter is observed to be event dependent when the dominating mechanism is infiltration excess runoff.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Innovation is central to the survival and growth of firms, and ultimately to the health of the economies of which they are part. A clear understanding both of the processes by which firms perform innovation and the benefits which flow from innovation in terms of productivity and growth is therefore essential. This paper demonstrates the use of a conceptual framework and modeling tool, the innovation value chain (IVC), and shows how the IVC approach helps to highlight strengths and weaknesses in the innovation performance of a key group of firms-new technology-based firms. The value of the IVC is demonstrated in showing the key interrelationships in the whole process of innovation from sourcing knowledge through product and process innovation to performance in terms of the growth and productivity outcomes of different types of innovation. The use of the IVC highlights key complementarities, such as that between internal R&D, external R&D, and other external sources of knowledge. Other important relationships are also highlighted. Skill resources matter throughout the IVC, being positively associated with external knowledge linkages and innovation success, and also having a direct influence on growth independent of the effect on innovation. A key benefit of the IVC approach is therefore its ability to highlight the roles of different factors at various stages of the knowledge-innovation-performance nexus, and to show their indirect as well as direct impact. This in turn permits both managerial and policy implications to be drawn. © 2012 Product Development & Management Association.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An electrostatic model is developed for osmotic flow across a layer consisting of identical circular cylinders with a fixed surface charge, aligned parallel to each other so as to form an ordered hexagonal arrangement. The expression of the osmotic reflection coefficient is derived for spherical solutes with a fixed surface charge suspended in an electrolyte, based on low-Reynolds-number hydrodynamics and a continuum, point-charge description of the electric double layers. The repulsive electrostatic interaction between the surface charges with the same sign on the solute and the cylinders is shown to increase the exclusion region of solute from the cylinder surface, which enhances the osmotic flow. Applying the present model to the study of osmotic flow across the endothelial surface glycocalyx of capillary walls has revealed that this electrostatic model could account well for the reflection coefficients measured for charged macromolecules, such as albumin, in the physiological range of charge density and ion concentration.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A theoretical model for the transport phenomena in an air gap membrane distillation is presented. The model is based on the conservation equations for the mass, momentum, energy and species within the feed water solution as well as on the mass and energy balances on the membrane sides. The slip flow occurs due to the hydrophobic properties of the membrane. The slip boundary condition applied on the feed saline solution-membrane interface is taken into consideration showing its effects on process parameters particularly permeate flow, heat transfer coefficient and thermal efficiency. The theoretical model was validated with available experimental data and was found to be in good agreement especially when the slip condition is introduced. Increasing slip length from zero to 200 μm was found to increase the permeate flux and the thermal efficiency by 33% and 1.7% respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A mathematical model is presented for steady fluid flow across microvessel walls through a serial pathway consisting of the endothelial surface glycocalyx and the intercellular cleft between adjacent endothelial cells, with junction strands and their discontinuous gaps. The three-dimensional flow through the pathway from the vessel lumen to the tissue space has been computed numerically based on a Brinkman equation with appropriate values of the Darcy permeability. The predicted values of the hydraulic conductivity Lp, defined as the ratio of the flow rate per unit surface area of the vessel wall to the pressure drop across it, are close to experimental measurements for rat mesentery microvessels. If the values of the Darcy permeability for the surface glycocalyx are determined based on the regular arrangements of fibres with 6nm radius and 8nm spacing proposed recently from the detailed structural measurements, then the present study suggests that the surface glycocalyx could be much less resistant to flow compared to previous estimates by the one-dimensional flow analyses, and the intercellular cleft could be a major determinant of the hydraulic conductivity of the microvessel wall.