956 resultados para finite difference methods


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This dissertation concerns the intersection of three areas of discrete mathematics: finite geometries, design theory, and coding theory. The central theme is the power of finite geometry designs, which are constructed from the points and t-dimensional subspaces of a projective or affine geometry. We use these designs to construct and analyze combinatorial objects which inherit their best properties from these geometric structures. A central question in the study of finite geometry designs is Hamada’s conjecture, which proposes that finite geometry designs are the unique designs with minimum p-rank among all designs with the same parameters. In this dissertation, we will examine several questions related to Hamada’s conjecture, including the existence of counterexamples. We will also study the applicability of certain decoding methods to known counterexamples. We begin by constructing an infinite family of counterexamples to Hamada’s conjecture. These designs are the first infinite class of counterexamples for the affine case of Hamada’s conjecture. We further demonstrate how these designs, along with the projective polarity designs of Jungnickel and Tonchev, admit majority-logic decoding schemes. The codes obtained from these polarity designs attain error-correcting performance which is, in certain cases, equal to that of the finite geometry designs from which they are derived. This further demonstrates the highly geometric structure maintained by these designs. Finite geometries also help us construct several types of quantum error-correcting codes. We use relatives of finite geometry designs to construct infinite families of q-ary quantum stabilizer codes. We also construct entanglement-assisted quantum error-correcting codes (EAQECCs) which admit a particularly efficient and effective error-correcting scheme, while also providing the first general method for constructing these quantum codes with known parameters and desirable properties. Finite geometry designs are used to give exceptional examples of these codes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Determining how an exhaust system will perform acoustically before a prototype muffler is built can save the designer both a substantial amount of time and resources. In order to effectively use the simulation tools available it is important to understand what is the most effective tool for the intended purpose of analysis as well as how typical elements in an exhaust system affect muffler performance. An in-depth look at the available tools and their most beneficial uses are presented in this thesis. A full parametric study was conducted using the FEM method for typical muffler elements which was also correlated to experimental results. This thesis lays out the overall ground work on how to accurately predict sound pressure levels in the free field for an exhaust system with the engine properties included. The accuracy of the model is heavily dependent on the correct temperature profile of the model in addition to the accuracy of the source properties. These factors will be discussed in detail and methods for determining them will be presented. The secondary effects of mean flow, which affects both the acoustical wave propagation and the flow noise generation, will be discussed. Effective ways for predicting these secondary effects will be described. Experimental models will be tested on a flow rig that showcases these phenomena.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Data obtained with two CZE assays for determining carbohydrate-deficient transferrin (CDT) in human serum under routine conditions, the CAPILLARYS CDT and the high-resolution CEofix (HR-CEofix) CDT methods, are in agreement with patient sera that do not exhibit interferences, high trisialo-transferrin (Tf) levels or genetic variants. HR-CEofix CDT levels are somewhat higher compared to those obtained with the CAPILLARYS method and this bias corresponds to the difference of the upper reference values of the two assays. The lower resolution between disialo-Tf and trisialo-Tf observed in the CAPILLARYS system (mean: 1.24) compared to HR-CEofix (mean: 1.74) is believed to be the key for this difference. For critical sera with high trisialo-Tf levels, genetic variants, or certain interferences in the beta-region, the HR-CEofix approach is demonstrated to perform better than CAPILLARYS. However, the determination of CDT with the HR-CEofix method can also be hampered with interferences. Results with disialo-Tf values larger than 3% in the absence of asialo-Tf should be evaluated with immunosubtraction of Tf and possibly also confirmed with another CZE method or by HPLC. Furthermore, data gathered with the N Latex CDT direct immunonephelometric assay suggest that this assay can be used for screening purposes. To reduce the number of false negative results, CDT data above 2.0% should be confirmed using a separation method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Difference in pulse pressure (dPP) reliably predicts fluid responsiveness in patients. We have developed a respiratory variation (RV) monitoring device (RV monitor), which continuously records both airway pressure and arterial blood pressure (ABP). We compared the RV monitor measurements with manual dPP measurements. METHODS: ABP and airway pressure (PAW) from 24 patients were recorded. Data were fed to the RV monitor to calculate dPP and systolic pressure variation in two different ways: (a) considering both ABP and PAW (RV algorithm) and (b) ABP only (RV(slim) algorithm). Additionally, ABP and PAW were recorded intraoperatively in 10-min intervals for later calculation of dPP by manual assessment. Interobserver variability was determined. Manual dPP assessments were used for comparison with automated measurements. To estimate the importance of the PAW signal, RV(slim) measurements were compared with RV measurements. RESULTS: For the 24 patients, 174 measurements (6-10 per patient) were recorded. Six observers assessed dPP manually in the first 8 patients (10-min interval, 53 measurements); no interobserver variability occurred using a computer-assisted method. Bland-Altman analysis showed acceptable bias and limits of agreement of the 2 automated methods compared with the manual method (RV: -0.33% +/- 8.72% and RV(slim): -1.74% +/- 7.97%). The difference between RV measurements and RV(slim) measurements is small (bias -1.05%, limits of agreement 5.67%). CONCLUSIONS: Measurements of the automated device are comparable with measurements obtained by human observers, who use a computer-assisted method. The importance of the PAW signal is questionable.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE: To assess family satisfaction in the ICU and to identify parameters for improvement. METHODS: Multicenter study in Swiss ICUs. Families were given a questionnaire covering overall satisfaction, satisfaction with care and satisfaction with information/decision-making. Demographic, medical and institutional data were gathered from patients, visitors and ICUs. RESULTS: A total of 996 questionnaires from family members were analyzed. Individual questions were assessed, and summary measures (range 0-100) were calculated, with higher scores indicating greater satisfaction. Summary score was 78 +/- 14 (mean +/- SD) for overall satisfaction, 79 +/- 14 for care and 77 +/- 15 for information/decision-making. In multivariable multilevel linear regression analyses, higher severity of illness was associated with higher satisfaction, while a higher patient:nurse ratio and written admission/discharge criteria were associated with lower overall satisfaction. Using performance-importance plots, items with high impact on overall satisfaction but low satisfaction were identified. They included: emotional support, providing understandable, complete, consistent information and coordination of care. CONCLUSIONS: Overall, proxies were satisfied with care and with information/decision-making. Still, several factors, such as emotional support, coordination of care and communication, are associated with poor satisfaction, suggesting the need for improvement. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00134-009-1611-4) contains supplementary material, which is available to authorized users.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Because of the important morbidity and mortality associated with osteoporosis, it is essential to detect subjects at risk by screening methods, such as bone quantitative ultrasounds (QUSs). Several studies showed that QUS could predict fractures. None, however, compared prospectively different QUS devices, and few data of quality controls (QCs) have been published. The Swiss Evaluation of the Methods of Measurement of Osteoporotic Fracture Risk is a prospective multicenter study that compared three QUSs for the assessment of hip fracture risk in a population of 7609 women age >/=70 yr. Because the inclusion phase lasted 20 mo, and because 10 centers participated in this study, QC became a major issue. We therefore developed a QC procedure to assess the stability and precision of the devices, and for their cross-calibration. Our study focuses on the two heel QUSs. The water bath system (Achilles+) had a higher precision than the dry system (Sahara). The QC results were highly dependent on temperature. QUS stability was acceptable, but Sahara must be calibrated regularly. A sufficient homogeneity among all the Sahara devices could be demonstrated, whereas significant differences were found among the Achilles+ devices. For speed of sound, 52% of the differences among the Achilles+ was explained by the water s temperature. However, for broadband ultrasound attenuation, a maximal difference of 23% persisted after adjustment for temperature. Because such differences could influence measurements in vivo, it is crucial to develop standardized phantoms to be used in prospective multicenter studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ABSTRACT ONTOLOGIES AND METHODS FOR INTEROPERABILITY OF ENGINEERING ANALYSIS MODELS (EAMS) IN AN E-DESIGN ENVIRONMENT SEPTEMBER 2007 NEELIMA KANURI, B.S., BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCES PILANI INDIA M.S., UNIVERSITY OF MASSACHUSETTS AMHERST Directed by: Professor Ian Grosse Interoperability is the ability of two or more systems to exchange and reuse information efficiently. This thesis presents new techniques for interoperating engineering tools using ontologies as the basis for representing, visualizing, reasoning about, and securely exchanging abstract engineering knowledge between software systems. The specific engineering domain that is the primary focus of this report is the modeling knowledge associated with the development of engineering analysis models (EAMs). This abstract modeling knowledge has been used to support integration of analysis and optimization tools in iSIGHT FD , a commercial engineering environment. ANSYS , a commercial FEA tool, has been wrapped as an analysis service available inside of iSIGHT-FD. Engineering analysis modeling (EAM) ontology has been developed and instantiated to form a knowledge base for representing analysis modeling knowledge. The instances of the knowledge base are the analysis models of real world applications. To illustrate how abstract modeling knowledge can be exploited for useful purposes, a cantilever I-Beam design optimization problem has been used as a test bed proof-of-concept application. Two distinct finite element models of the I-beam are available to analyze a given beam design- a beam-element finite element model with potentially lower accuracy but significantly reduced computational costs and a high fidelity, high cost, shell-element finite element model. The goal is to obtain an optimized I-beam design at minimum computational expense. An intelligent KB tool was developed and implemented in FiPER . This tool reasons about the modeling knowledge to intelligently shift between the beam and the shell element models during an optimization process to select the best analysis model for a given optimization design state. In addition to improved interoperability and design optimization, methods are developed and presented that demonstrate the ability to operate on ontological knowledge bases to perform important engineering tasks. One such method is the automatic technical report generation method which converts the modeling knowledge associated with an analysis model to a flat technical report. The second method is a secure knowledge sharing method which allocates permissions to portions of knowledge to control knowledge access and sharing. Both the methods acting together enable recipient specific fine grain controlled knowledge viewing and sharing in an engineering workflow integration environment, such as iSIGHT-FD. These methods together play a very efficient role in reducing the large scale inefficiencies existing in current product design and development cycles due to poor knowledge sharing and reuse between people and software engineering tools. This work is a significant advance in both understanding and application of integration of knowledge in a distributed engineering design framework.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study aimed to assess the performance of International Caries Detection and Assessment System (ICDAS), radiographic examination, and fluorescence-based methods for detecting occlusal caries in primary teeth. One occlusal site on each of 79 primary molars was assessed twice by two examiners using ICDAS, bitewing radiography (BW), DIAGNOdent 2095 (LF), DIAGNOdent 2190 (LFpen), and VistaProof fluorescence camera (FC). The teeth were histologically prepared and assessed for caries extent. Optimal cutoff limits were calculated for LF, LFpen, and FC. At the D (1) threshold (enamel and dentin lesions), ICDAS and FC presented higher sensitivity values (0.75 and 0.73, respectively), while BW showed higher specificity (1.00). At the D (2) threshold (inner enamel and dentin lesions), ICDAS presented higher sensitivity (0.83) and statistically significantly lower specificity (0.70). At the D(3) threshold (dentin lesions), LFpen and FC showed higher sensitivity (1.00 and 0.91, respectively), while higher specificity was presented by FC (0.95), ICDAS (0.94), BW (0.94), and LF (0.92). The area under the receiver operating characteristic (ROC) curve (Az) varied from 0.780 (BW) to 0.941 (LF). Spearman correlation coefficients with histology were 0.72 (ICDAS), 0.64 (BW), 0.71 (LF), 0.65 (LFpen), and 0.74 (FC). Inter- and intraexaminer intraclass correlation values varied from 0.772 to 0.963 and unweighted kappa values ranged from 0.462 to 0.750. In conclusion, ICDAS and FC exhibited better accuracy in detecting enamel and dentin caries lesions, whereas ICDAS, LF, LFpen, and FC were more appropriate for detecting dentin lesions on occlusal surfaces in primary teeth, with no statistically significant difference among them. All methods presented good to excellent reproducibility.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Systematic reviews and meta-analyses of randomized trials that include patient-reported outcomes (PROs) often provide crucial information for patients, clinicians and policy-makers facing challenging health care decisions. Based on emerging methods, guidance on improving the interpretability of meta-analysis of patient-reported outcomes, typically continuous in nature, is likely to enhance decision-making. The objective of this paper is to summarize approaches to enhancing the interpretability of pooled estimates of PROs in meta-analyses. When differences in PROs between groups are statistically significant, decision-makers must be able to interpret the magnitude of effect. This is challenging when, as is often the case, clinical trial investigators use different measurement instruments for the same construct within and between individual randomized trials. For such cases, in addition to pooling results as a standardized mean difference, we recommend that systematic review authors use other methods to present results such as relative (relative risk, odds ratio) or absolute (risk difference) dichotomized treatment effects, complimented by presentation in either: natural units (e.g. overall depression reduced by 2.4 points when measured on a 50-point Hamilton Rating Scale for Depression); minimal important difference units (e.g. where 1.0 unit represents the smallest difference in depression that patients, on average, perceive as important the depression score was 0.38 (95%CI 0.30 to 0.47) units less than the control group); or a ratio of means (e.g. where the mean in the treatment group is divided by the mean in the control group, the ratio of means is 1.27, representing a 27%relative reduction in the mean depression score).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background Finite element models of augmented vertebral bodies require a realistic modelling of the cement infiltrated region. Most methods published so far used idealized cement shapes or oversimplified material models for the augmented region. In this study, an improved, anatomy-specific, homogenized finite element method was developed and validated to predict the apparent as well as the local mechanical behavior of augmented vertebral bodies. Methods Forty-nine human vertebral body sections were prepared by removing the cortical endplates and scanned with high-resolution peripheral quantitative CT before and after injection of a standard and a low-modulus bone cement. Forty-one specimens were tested in compression to measure stiffness, strength and contact pressure distributions between specimens and loading-plates. From the remaining eight, fourteen cylindrical specimens were extracted from the augmented region and tested in compression to obtain material properties. Anatomy-specific finite element models were generated from the CT data. The models featured element-specific, density-fabric-based material properties, damage accumulation, real cement distributions and experimentally determined material properties for the augmented region. Apparent stiffness and strength as well as contact pressure distributions at the loading plates were compared between simulations and experiments. Findings The finite element models were able to predict apparent stiffness (R2 > 0.86) and apparent strength (R2 > 0.92) very well. Also, the numerically obtained pressure distributions were in reasonable quantitative (R2 > 0.48) and qualitative agreement with the experiments. Interpretation The proposed finite element models have proven to be an accurate tool for studying the apparent as well as the local mechanical behavior of augmented vertebral bodies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose Femoral fracture is a common medical problem in osteoporotic individuals. Bone mineral density (BMD) is the gold standard measure to evaluate fracture risk in vivo. Quantitative computed tomography (QCT)-based homogenized voxel finite element (hvFE) models have been proved to be more accurate predictors of femoral strength than BMD by adding geometrical and material properties. The aim of this study was to evaluate the ability of hvFE models in predicting femoral stiffness, strength and failure location for a large number of pairs of human femora tested in two different loading scenarios. Methods Thirty-six pairs of femora were scanned with QCT and total proximal BMD and BMC were evaluated. For each pair, one femur was positioned in one-legged stance configuration (STANCE) and the other in a sideways configuration (SIDE). Nonlinear hvFE models were generated from QCT images by reproducing the same loading configurations imposed in the experiments. For experiments and models, the structural properties (stiffness and ultimate load), the failure location and the motion of the femoral head were computed and compared. Results In both configurations, hvFE models predicted both stiffness (R2=0.82 for STANCE and R2=0.74 for SIDE) and femoral ultimate load (R2=0.80 for STANCE and R2=0.85 for SIDE) better than BMD and BMC. Moreover, the models predicted qualitatively well the failure location (66% of cases) and the motion of the femoral head. Conclusions The subject specific QCT-based nonlinear hvFE model cannot only predict femoral apparent mechanical properties better than densitometric measures, but can additionally provide useful qualitative information about failure location.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new technique for the detection of microbiological fecal pollution in drinking and in raw surface water has been modified and tested against the standard multiple-tube fermentation technique (most-probable-number, MPN). The performance of the new test in detecting fecal pollution in drinking water has been tested at different incubation temperatures. The basis for the new test was the detection of hydrogen sulfide produced by the hydrogen sulfide producing bacteria which are usually associated with the coliform group. The positive results are indicated by the appearance of a brown to black color in the contents of the fermentation tube within 18 to 24 hours of incubation at 35 (+OR-) .5(DEGREES)C. For this study 158 water samples of different sources have been used. The results were analyzed statistically with the paired t-test and the one-way analysis of variance. No statistically significant difference was noticed between the two methods, when tested 35 (+OR-) .5(DEGREES)C, in detecting fecal pollution in drinking water. The new test showed more positive results with raw surface water, which could be due to the presence of hydrogen sulfide producing bacteria of non-fecal origin like Desulfovibrio and Desulfomaculum. The survival of the hydrogen sulfide producing bacteria and the coliforms was also tested over a 7-day period, and the results showed no significant difference. The two methods showed no significant difference when used to detect fecal pollution at a very low coliform density. The results showed that the new test is mostly effective, in detecting fecal pollution in drinking water, when used at 35 (+OR-) .5(DEGREES)C. The new test is effective, simple, and less expensive when used to detect fecal pollution in drinking water and raw surface water at 35 (+OR-) .5(DEGREES)C. The method can be used for qualitative and/or quantitative analysis of water in the field and in the laboratory. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND Medial open wedge high tibial osteotomy is a well-established procedure for the treatment of unicompartmental osteoarthritis and symptomatic varus malalignment. We hypothesized that different fixation devices generate different fixation stability profiles for the various wedge sizes in a finite element (FE) analysis. METHODS Four types of fixation were compared: 1) first and 2) second generation Puddu plates, and 3) TomoFix plate with and 4) without bone graft. Cortical and cancellous bone was modelled and five different opening wedge sizes were studied for each model. Outcome measures included: 1) stresses in bone, 2) relative displacement of the proximal and distal tibial fragments, 3) stresses in the plates, 4) stresses on the upper and lower screw surfaces in the screw channels. RESULTS The highest load for all fixation types occurred in the plate axis. For the vast majority of the wedge sizes and fixation types the shear stress (von Mises stress) was dominating in the bone independent of fixation type. The relative displacements of the tibial fragments were low (in μm range). With an increasing wedge size this displacement tended to increase for both Puddu plates and the TomoFix plate with bone graft. For the TomoFix plate without bone graft a rather opposite trend was observed.For all fixation types the occurring stresses at the screw-bone contact areas pulled at the screws and exceeded the allowable threshold of 1.2 MPa for at least one screw surface. Of the six screw surfaces that were studied, the TomoFix plate with bone graft showed a stress excess of one out of twelve and without bone graft, five out of twelve. With the Puddu plates, an excess stress occurred in the majority of screw surfaces. CONCLUSIONS The different fixation devices generate different fixation stability profiles for different opening wedge sizes. Based on the computational simulations, none of the studied osteosynthesis fixation types warranted an intransigent full weight bearing per se. The highest fixation stability was observed for the TomoFix plates and the lowest for the first generation Puddu plate. These findings were revealed in theoretical models and need to be validated in controlled clinical settings.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Statistical appearance models have recently been introduced in bone mechanics to investigate bone geometry and mechanical properties in population studies. The establishment of accurate anatomical correspondences is a critical aspect for the construction of reliable models. Depending on the representation of a bone as an image or a mesh, correspondences are detected using image registration or mesh morphing. The objective of this study was to compare image-based and mesh-based statistical appearance models of the femur for finite element (FE) simulations. To this aim, (i) we compared correspondence detection methods on bone surface and in bone volume; (ii) we created an image-based and a mesh-based statistical appearance models from 130 images, which we validated using compactness, representation and generalization, and we analyzed the FE results on 50 recreated bones vs. original bones; (iii) we created 1000 new instances, and we compared the quality of the FE meshes. Results showed that the image-based approach was more accurate in volume correspondence detection and quality of FE meshes, whereas the mesh-based approach was more accurate for surface correspondence detection and model compactness. Based on our results, we recommend the use of image-based statistical appearance models for FE simulations of the femur.